Skip to main content

Advertisement

Log in

Elevated Levels of IL-18 in Plasma and Skeletal Muscle in Chronic Obstructive Pulmonary Disease

  • Original Paper
  • Published:
Lung Aims and scope Submit manuscript

An Erratum to this article was published on 13 November 2011

Abstract

The aim of this study was to test the hypothesis that systemic inflammation in patients with chronic obstructive pulmonary disease (COPD) is accompanied by enhanced interleukin 18 (IL-18) expression in skeletal muscle, which may precede muscle weight loss. Twenty patients with moderate to severe COPD [12 women, 66 ± 9.4 years of age and forced expiratory volume in 1 second (FEV1) of 32% ± 12 % of predicted value] and 20 healthy age-, gender-, and body mass index (BMI)-matched controls (10 nonsymptomatic smokers and 10 nonsmokers) were included in the study. Plasma levels of IL-18 were elevated in COPD patients (n = 20) versus healthy controls (n = 20) (221.2 pg/ml [196.0–294.2 pg/pl] vs. 164.8 pg/ml [144.4–193.3 pg/pl], p = 0.04) and IL-18 was expressed in skeletal muscle, with IL-18 mRNA levels being elevated in biopsies from COPD patients (n = 19) versus healthy controls (n = 18) (4.3 [2.6–5.9] vs. 2.4 [1.6–3.1], p = 0.003). Immunohistochemical evaluation revealed a strong expression of IL-18 in Type II muscle fibers from COPD patients. Plasma levels and skeletal muscle mRNA levels of tumor necrosis factor α (TNF-α) and IL-6 did not differ between the groups. Elevated skeletal muscle expression of IL-18 was found in COPD patients with normal body weight, indicating that IL-18 potentially may be involved in the pathogenesis of COPD-associated muscle wasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Betz R, Kohlhaufl M, Kassner G, et al. (2001) Increased sputum IL-8 and IL-5 in asymptomatic nonspecific airway hyperresponsiveness. Lung 179(2):119–133

    Article  PubMed  CAS  Google Scholar 

  2. Chung KF (2001) Cytokines in chronic obstructive pulmonary disease. Eur Respir J 18(Suppl 34):50–59

    Article  Google Scholar 

  3. Decramer M, De BF, Del PA, Marinari S (2005) Systemic effects of COPD. Respir Med 99 Suppl B:S3–S10

    Article  PubMed  Google Scholar 

  4. Jeffery PK, Laitinen A, Venge P (2000) Biopsy markers of airway inflammation and remodelling. Respir Med 94 Suppl F:S9–S15

    Article  PubMed  Google Scholar 

  5. Anker SD, Coats AJ (1999) Cardiac cachexia: a syndrome with impaired survival and immune and neuroendocrine activation. Chest 115(3):836–847

    Article  PubMed  CAS  Google Scholar 

  6. Schols AM, Slangen J, Volovics L, Wouters EF (1998) Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157(6 Pt 1):1791–1797

    PubMed  CAS  Google Scholar 

  7. Lacasse Y, Wong E, Guyatt GH, et al. (1996) Meta-analysis of respiratory rehabilitation in chronic obstructive pulmonary disease. Lancet 348:1115–1119

    Article  PubMed  CAS  Google Scholar 

  8. Dekhuijzen PN, van Herwaarden CL, Cox NJ, Folgering HT (1990) Exercise training during pulmonary rehabilitation in chronic obstructive pulmonary disease. Lung 168 Suppl:481–488

    Article  PubMed  Google Scholar 

  9. Di Francia M, Barbier D, Mege JL, Orehek J (1994) Tumor necrosis factor-alpha levels and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 150(5 Pt 1):1453–1455

    PubMed  CAS  Google Scholar 

  10. de Godoy I, Donahoe M, Calhoun WJ, Mancino J, Rogers RM (1996) Elevated TNF-alpha production by peripheral blood monocytes of weight-losing COPD patients. Am J Respir Crit Care Med 153(2):633–637

    PubMed  Google Scholar 

  11. Higham MA, Pride NB, Alikhan A, Morrell NW (2000) Tumour necrosis factor-alpha gene promoter polymorphism in chronic obstructive pulmonary disease. Eur Respir J 15(2):281–284

    Article  PubMed  CAS  Google Scholar 

  12. Van Helvoort HA, Heijdra YF, Thijs HM, et al. (2006) Exercise-induced systemic effects in muscle-wasted patients with COPD. Med Sci Sports Exerc 38(9):1543–1552

    Article  PubMed  Google Scholar 

  13. Schols AM, Buurman WA, Staal van den Brekel AJ, Dentener MA, Wouters EF (1996) Evidence for a relation between metabolic derangements and increased levels of inflammatory mediators in a subgroup of patients with chronic obstructive pulmonary disease. Thorax 51(8):819–824

    Article  PubMed  CAS  Google Scholar 

  14. Montes de OM, Torres SH, De SJ, et al. (2005) Skeletal muscle inflammation and nitric oxide in patients with COPD. Eur Respir J 26(3):390–397

    Article  Google Scholar 

  15. Rabinovich RA, Figueras M, Ardite E, et al. (2003) Increased tumour necrosis factor-alpha plasma levels during moderate-intensity exercise in COPD patients. Eur Respir J 21(5):789–794

    Article  PubMed  CAS  Google Scholar 

  16. Kashiwamura S, Ueda H, Okamura H (2002) Roles of interleukin-18 in tissue destruction and compensatory reactions. J Immunother 25 Suppl 1:S4–S11

    Article  PubMed  CAS  Google Scholar 

  17. Dinarello CA, Novick D, Puren AJ, et al. (1998) Overview of interleukin-18: more than an interferon-gamma inducing factor. J Leukoc Biol 63(6):658–664

    PubMed  CAS  Google Scholar 

  18. Ghayur T, Banerjee S, Hugunin M, et al. (1997) Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature 386(6625):619–623

    Article  PubMed  CAS  Google Scholar 

  19. Gu Y, Kuida K, Tsutsui H, et al. (1997) Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science 275(5297):206–209

    Article  PubMed  CAS  Google Scholar 

  20. Bazan JF, Timans JC, Kastelein RA (1996) A newly defined interleukin-1? Nature 379(6566):591

    Article  PubMed  CAS  Google Scholar 

  21. Suzuki N, Suzuki S, Duncan GS, et al. (2002) Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416(6882):750–756

    Article  PubMed  CAS  Google Scholar 

  22. Plomgaard P, Penkowa M, Pedersen BK (2005) Fiber type specific expression of TNF-alpha, IL-6 and IL-18 in human skeletal muscles. Exerc Immunol Rev 11:53–63

    PubMed  Google Scholar 

  23. Hiscock N, Chan MH, Bisucci T, Darby IA, Febbraio MA (2004) Skeletal myocytes are a source of interleukin-6 mRNA expression and protein release during contraction: evidence of fiber type specificity. FASEB J 18(9):992–994

    PubMed  CAS  Google Scholar 

  24. Krogh-Madsen R, Plomgaard P, Moller K, Mittendorfer B, Pedersen BK (2006) Influence of TNF-alpha and IL-6 infusions on insulin sensitivity and expression of IL-18 in humans. Am J Physiol Endocrinol Metab 291(1):E108–E114

    Article  PubMed  CAS  Google Scholar 

  25. Pauwels RA, Buist AS, Ma P, Jenkins CR, Hurd SS (2001) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: National Heart, Lung, and Blood Institute and World Health Organization Global Initiative for Chronic Obstructive Lung Disease (GOLD): executive summary. Respir Care 46(8):798–825

    PubMed  CAS  Google Scholar 

  26. Klausen K, Andersen LB, Pelle I (1981) Adaptive changes in work capacity, skeletal muscle capillarization and enzyme levels during training and detraining. Acta Physiol Scand 113(1):9–16

    Article  PubMed  CAS  Google Scholar 

  27. Carr A, Emery S, Law M, et al. (2003) An objective case definition of lipodystrophy in HIV-infected adults: a case-control study. Lancet 361(9359):726–735

    Article  PubMed  CAS  Google Scholar 

  28. Steensberg A, Febbraio MA, Osada T, et al. (2001) Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content. J Physiol (Lond) 537(Pt 2):633–639

    Article  CAS  Google Scholar 

  29. Brooke MH, Kaiser KK (1970) Muscle fiber types: how many and what kind? Arch Neurol 23(4):369–379

    PubMed  CAS  Google Scholar 

  30. Brooke MH, Kaiser KK (1970) Three “myosin adenosine triphosphatase” systems: the nature of their pH lability and sulfhydryl dependence. J Histochem Cytochem 18(9):670–672

    Article  PubMed  CAS  Google Scholar 

  31. Andersen JL, Aagaard P (2000) Myosin heavy chain IIX overshoot in human skeletal muscle. Muscle Nerve 23(7):1095–1104

    Article  PubMed  CAS  Google Scholar 

  32. Qu Z, Andersen JL, Zhou S (1997) Visualisation of capillaries in human skeletal muscle. Histochem Cell Biol 107(2):169–174

    Article  PubMed  CAS  Google Scholar 

  33. Puren AJ, Razeghi P, Fantuzzi G, Dinarello CA (1998) Interleukin-18 enhances lipopolysaccharide-induced interferon-gamma production in human whole blood cultures. J Infect Dis 178(6):1830–1834

    Article  PubMed  CAS  Google Scholar 

  34. Keller C, Steensberg A, Pilegaard H, et al. (2001) Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J 15(14):2748–2750

    PubMed  CAS  Google Scholar 

  35. Penkowa M, Keller C, Keller P, Jauffred S, Pedersen BK (2003) Immunohistochemical detection of interleukin-6 in human skeletal muscle fibers following exercise. FASEB J 17(14):2166–2168

    PubMed  CAS  Google Scholar 

  36. Akerstrom TC, Steensberg A, Keller P, et al. (2005) Exercise induces interleukin-8 expression in human skeletal muscle. J Physiol 563:507–516

    Article  PubMed  CAS  Google Scholar 

  37. Majori M, Corradi M, Caminati A, et al. (1999) Predominant TH1 cytokine pattern in peripheral blood from subjects with chronic obstructive pulmonary disease. J Allergy Clin Immunol 103(3 Pt 1):458–462

    Article  PubMed  CAS  Google Scholar 

  38. Esposito K, Marfella R, Giugliano D (2004) Plasma interleukin-18 concentrations are elevated in type 2 diabetes. Diabetes Care 27(1):272

    Article  PubMed  Google Scholar 

  39. Sauerwein HP, Schols AM (2002) Glucose metabolism in chronic lung disease. Clin Nutr 21(5):367–371

    Article  PubMed  CAS  Google Scholar 

  40. Hotamisligil GS, Peraldi P, Budavari A, et al. (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271(5249):665–668

    Article  PubMed  CAS  Google Scholar 

  41. Gosker HR, van Mameren H, van Dijk PJ, et al. (2002) Skeletal muscle fibre-type shifting and metabolic profile in patients with chronic obstructive pulmonary disease. Eur Respir J 19(4):617–625

    Article  PubMed  CAS  Google Scholar 

  42. Burnham R, Martin T, Stein R, et al. (1997) Skeletal muscle fibre type transformation following spinal cord injury. Spinal Cord 35(2):86–91

    Article  PubMed  CAS  Google Scholar 

  43. Hoppeler H, Vogt M, Weibel ER, Fluck M (2003) Response of skeletal muscle mitochondria to hypoxia. Exp Physiol 88(1):109–119

    Article  PubMed  CAS  Google Scholar 

  44. Hoppeler H (1999) Vascular growth in hypoxic skeletal muscle. Adv Exp Med Biol 474:277–286

    Article  PubMed  CAS  Google Scholar 

  45. Gosker HR, Wouters EF, van der Vusse GJ, Schols AM (2000) Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy perspectives. Am J Clin Nutr 71(5):1033–1047

    PubMed  CAS  Google Scholar 

  46. Nakamura S, Otani T, Ijiri Y, et al. (2000) IFN-gamma-dependent and -independent mechanisms in adverse effects caused by concomitant administration of IL-18 and IL-12. J Immunol 164(6):3330–3336

    PubMed  CAS  Google Scholar 

  47. Chikano S, Sawada K, Shimoyama T, et al. (2000) IL-18 and IL-12 induce intestinal inflammation and fatty liver in mice in an IFN-gamma dependent manner. Gut 47(6):779–786

    Article  PubMed  CAS  Google Scholar 

  48. Novota P, Kolostova K, Pinterova D, et al. (2005) Interleukin IL-18 gene promoter polymorphisms in adult patients with type 1 diabetes mellitus and latent autoimmune diabetes in adults. Immunol Lett 96(2):247–251

    Article  PubMed  CAS  Google Scholar 

  49. Esposito K, Pontillo A, Ciotola M, et al. (2002) Weight loss reduces interleukin-18 levels in obese women. J Clin Endocrinol Metab 87(8):3864–3866

    Article  PubMed  CAS  Google Scholar 

  50. Lindegaard B, Hansen AE, Gerstoft J, Pedersen BK (2004) High plasma level of IL-18 in HIV-infected patients with lipodystrophy. J Acquir Immune Defic Syndr 36(1):588–593

    Article  PubMed  CAS  Google Scholar 

  51. Agusti AG, Sauleda J, Miralles C, et al. (2002) Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166(4):485–489

    Article  PubMed  Google Scholar 

  52. Hashimoto W, Osaki T, Okamura H, et al. (1999) Differential antitumor effects of administration of recombinant IL-18 or recombinant IL-12 are mediated primarily by Fas-Fas ligand- and perforin-induced tumor apoptosis, respectively. J Immunol 163(2):583–589

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the subjects for their participation. Aase Vinum, Inger Schønheyder, Ruth Rousing, and Hanne Villumsen are acknowledged for their technical assistance. This work was supported by The Centre of Inflammation and Metabolism (supported by a grant from the Danish National Research Foundation, DG 02-512-555); The Copenhagen Muscle Research Centre (supported by grants from The University of Copenhagen, The Faculties of Science and of Health Sciences at this univesity); The Copenhagen Hospital Corporation; The Danish National Research Foundation (Grant 504-14); and the Commission of the European Communities (contract no. LSHM-CT-2004-005272 EXGENESIS). The study was also supported by grants from Danish Medical Research Council (No. 22-01-009), The Farmacist Foundation of 1991, Danish Lung Association, The Legacy of Ebba Celinder, and The Foundation of Managing Director Jacob Madsen & Spouse Olga Madsen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Pedersen.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00408-011-9330-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, A.M.W., Penkowa, M., Iversen, M. et al. Elevated Levels of IL-18 in Plasma and Skeletal Muscle in Chronic Obstructive Pulmonary Disease. Lung 185, 161–171 (2007). https://doi.org/10.1007/s00408-007-9000-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-007-9000-7

Keywords

Navigation