Skip to main content
Log in

Safety Profile of the Respiratory Fluoroquinolone Moxifloxacin

Comparison with Other Fluoroquinolones and Other Antibacterial Classes

  • Leading Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Moxifloxacin, a fluoroquinolone with potent activity against respiratory pathogens, is approved and considered as an alternative to β-lactams and macrolides for the treatment of acute bacterial sinusitis and lower respiratory tract infections. In this review, we critically examine its safety profile in comparison with other fluoroquinolones and other antibacterial classes sharing similar indications. Data were extracted from published clinical trials, meta-analyses, postmarketing studies, spontaneous report systems and case reports for rare effects.

Global analysis did not reveal significantly higher incidences of drug-related adverse effects than for comparators. Tendon rupture was infrequent with moxifloxacin, including when used in elderly patients with chronic obstructive pulmonary disease. Severe toxic cutaneous reactions and allergies were very rare. Phototoxicity and CNS adverse effects were less common than with other fluoroquinolones. Although causing a 4–7 msec corrected QT interval prolongation, severe cardiac toxicity was neither seen in large cohorts or clinical trials nor reported to pharmacovigilance systems. Hepatotoxicity was not different from what was observed for other fluoroquinolones (excluding trovafloxacin) and less frequent than reported for amoxicillin-clavulanic acid or telithromycin.

The data show that using moxifloxacin, in its accepted indications and following the corresponding guidelines, should not be associated with an excessive incidence of drug-related adverse reactions, provided the clinician takes care in identifying patients with known risk factors and pays due attention to the contraindications and warnings mentioned in the labelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Tdable V
Tdable VI.
Table VII

Similar content being viewed by others

Notes

  1. 1The structural formulae of all fluoroquinolones mentioned in this review, together with general considerations on structure-toxicity relationships, can be found elsewhere (see Van Bambeke et al.[3])

  2. 2The original search was performed in April 2008 with no date limit, and repeated in November 2008 to capture additional references; at manuscript proof stage (21 March 2009) a new search covering the whole of 2008 to March 2009 was again performed using ‘(moxifloxacin OR levofloxacin) AND (adverse effect OR safety OR cardiac OR hepatic OR toxicity OR QTc OR tendon* OR photoxicity OR death)’ as boolean operators to retrieve the very last publications relevant to moxifloxacin and levofloxacin.

  3. 3Moxifloxacin and levofloxacin, as well as all other fluoroquinolones currently approved in Europe, have been registered through decentralized or national procedures, making it difficult to compare and analyze the individual drug labels. An analysis of recent decisions of the European Medicines Agency about moxifloxacin and an update of its labeling, which will apply to countries of the EU, is presented in section 3 in this review.

  4. 4Moxifloxacin is often used in phase I trials as a ‘positive’ control for corrected QT (QTc) interval prolongation, which has led to the erroneous conclusion that the drug causes a potential hazard in patients. However, the reason that moxifloxacin is used is because the drug produces a measurable QTc interval increase; this allows the method used to assess QT interval prolongation to be validated while avoiding significant health risk for study subjects.

  5. 5Moxifloxacin was registered in Europe through a decentralized procedure. The amended labelling will be put into effect and made available in each Member country starting in 2009.

References

  1. US Levaquin® package insert [online]. Available from URL: http://www.levaquin.com/levaquin/shared/pi/levaquin.pdf [Accessed 2009 Mar 18]

  2. US Avelox® package insert [online]. Available from URL: http://www.univgraph.com/bayer/inserts/avelox.pdf [Accessed 2009 Mar 18]

  3. Van Bambeke F, Michot JM, Van Eldere J. et al. Quinolones in 2005: an update. Clin Microbiol Infect 2005 Apr; 11(4): 256–80

    PubMed  Google Scholar 

  4. Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007 Mar 1; 44 Suppl. 2: S27–72

    PubMed  CAS  Google Scholar 

  5. Woodhead M, Blasi F, Ewig S, et al. Guidelines for the management of adult lower respiratory tract infections. Eur Respir J 2005 Dec; 26(6): 1138–80

    PubMed  CAS  Google Scholar 

  6. Van Bambeke F, Reinert RR, Appelbaum PC, et al. Multidrug-resistant Streptococcus pneumoniae infections: current and future therapeutic options. Drugs 2007; 67(16): 2355–82

    PubMed  Google Scholar 

  7. Adam HJ, Schurek KN, Nichol KA, et al. Molecular characterization of increasing fluoroquinolone resistance in Streptococcus pneumoniae isolates in Canada, 1997 to 2005. Antimicrob Agents Chemother 2007 Jan; 51(1): 198–207

    PubMed  CAS  Google Scholar 

  8. Volonakis K, Souli M, Kapaskelis A, et al. Evolution of resistance patterns and identification of risk factors for Streptococcus pneumoniae colonisation in daycare centre attendees in Athens, Greece. Int J Antimicrob Agents 2006 Oct; 28(4): 297–301

    PubMed  CAS  Google Scholar 

  9. Sill ML, Law DK, Zhou J, et al. Population genetics and antibiotic susceptibility of invasive Haemophilus influenzae in Manitoba, Canada, from 2000 to 2006. FEMS Immunol Med Microbiol 2007 Nov; 51(2): 270–6

    PubMed  CAS  Google Scholar 

  10. Fluit AC, Florijn A, Verhoef J, et al. Susceptibility of European beta-lactamase-positive and -negative Haemophilus influenzae isolates from the periods 1997/1998 and 2002/2003. J Antimicrob Chemother 2005 Jul; 56(1): 133–8

    PubMed  CAS  Google Scholar 

  11. Shin JH, Jung HJ, Kim HR, et al. Prevalence, characteristics, and molecular epidemiology of macrolide and fluoroquinolone resistance in clinical isolates of Streptococcus pneumoniae at five tertiary-care hospitals in Korea. Antimicrob Agents Chemother 2007 Jul; 51(7): 2625–7

    PubMed  CAS  Google Scholar 

  12. Johnson DM, Stilwell MG, Fritsche TR, et al. Emergence of multidrug-resistant Streptococcus pneumoniae: report from the SENTRY Antimicrobial Surveillance Program (1999–2003). Diagn Microbiol Infect Dis 2006 Sep; 56(1): 69–74

    PubMed  Google Scholar 

  13. Schurek KN, Adam HJ, Siemens CG, et al. Are fluoroquinolone-susceptible isolates of Streptococcus pneumoniae really susceptible? A comparison of resistance mechanisms in Canadian isolates from 1997 and 2003. J Antimicrob Chemother 2005 Oct; 56(4): 769–72

    PubMed  CAS  Google Scholar 

  14. Noreddin AM, Marras TK, Sanders K, et al. Pharmacodynamic target attainment analysis against Streptococcus pneumoniae using levofloxacin 500mg, 750mg and 1000 mg once daily in plasma (P) and epithelial lining fluid (ELF) of hospitalized patients with community acquired pneumonia (CAP). Int J Antimicrob Agents 2004 Nov; 24(5): 479–84

    PubMed  CAS  Google Scholar 

  15. Conte Jr JE, Golden JA, McIver M, et al. Intrapulmonary pharmacokinetics and pharmacodynamics of high-dose levofloxacin in healthy volunteer subjects. Int J Antimicrob Agents 2006 Aug; 28(2): 114–21

    PubMed  CAS  Google Scholar 

  16. Ferrara AM. New fluoroquinolones in lower respiratory tract infections and emerging patterns of pneumococcal resistance. Infection 2005 Jun; 33(3): 106–14

    PubMed  CAS  Google Scholar 

  17. Shams WE, Evans ME. Guide to selection of fluoroquinolones in patients with lower respiratory tract infections. Drugs 2005; 65(7): 949–91

    PubMed  CAS  Google Scholar 

  18. Miravitlles M. Moxifloxacin in respiratory tract infections. Expert Opin Pharmacother 2005 Feb; 6(2): 283–93

    PubMed  CAS  Google Scholar 

  19. Ball P, Stahlmann R, Kubin R, et al. Safety profile of oral and intravenous moxifloxacin: cumulative data from clinical trials and postmarketing studies. Clin Ther 2004 Jul; 26(7): 940–50

    PubMed  CAS  Google Scholar 

  20. Andriole VT, Haverstock DC, Choudhri SH. Retrospective analysis of the safety profile of oral moxifloxacin in elderly patients enrolled in clinical trials. Drug Saf 2005; 28(5): 443–52

    PubMed  CAS  Google Scholar 

  21. Balfour JA, Lamb HM. Moxifloxacin: a review of its clinical potential in the management of community-acquired respiratory tract infections. Drugs 2000 Jan; 59(1): 115–39

    PubMed  CAS  Google Scholar 

  22. Elies W, Landen H, Stauch K. Efficacy and tolerability of moxifloxacin in patients with sinusitis treated in general practice: results of a post-marketing surveillance study. Clin Drug Investig 2004; 24(8): 431–9

    PubMed  CAS  Google Scholar 

  23. Karageorgopoulos DE, Giannopoulou KP, Grammatikos AP, et al. Fluoroquinolones compared with beta-lactam antibiotics for the treatment of acute bacterial sinusitis: a meta-analysis of randomized controlled trials. CMAJ 2008 Mar 25; 178(7): 845–54

    PubMed  Google Scholar 

  24. Arrieta JR, Galgano AS, Sakano E, et al. Moxifloxacin versus amoxicillin/clavulanate in the treatment of acute sinusitis. Am J Otolaryngol 2007 Mar; 28(2): 78–82

    PubMed  CAS  Google Scholar 

  25. Chen W, Wu C, Li Z, et al. Efficacy and tolerability of moxifloxacin in patients with respiratory tract infections treated in general practice: results of a post-marketing surveillance study. Clin Drug Investig 2006; 26(9): 501–9

    PubMed  CAS  Google Scholar 

  26. Mittmann N, Jivarj F, Wong A, et al. Oral fluoroquinolones in the treatment of pneumonia, bronchitis and sinusitis. Can J Infect Dis 2002 Sep; 13(5): 293–300

    PubMed  Google Scholar 

  27. Faich GA, Morganroth J, Whitehouse AB, et al. Clinical experience with moxifloxacin in patients with respiratory tract infections. Ann Pharmacother 2004 May; 38(5): 749–54

    PubMed  CAS  Google Scholar 

  28. Klossek JM, Siegert R, Nikolaidis P, et al. Comparison of the efficacy and safety of moxifloxacin and trovafloxacin for the treatment of acute, bacterial maxillary sinusitis in adults. J Laryngol Otol 2003 Jan; 117(1): 43–51

    PubMed  Google Scholar 

  29. Ferguson BJ, Guzzetta RV, Spector SL, et al. Efficacy and safety of oral telithromycin once daily for 5 days versus moxifloxacin once daily for 10 days in the treatment of acute bacterial rhinosinusitis. Otolaryngol Head Neck Surg 2004 Sep; 131(3): 207–14

    PubMed  Google Scholar 

  30. Koch H, Landen H, Stauch K. Daily-practice treatment of acute exacerbations of chronic bronchitis with moxifloxacin in a large cohort in Germany. Clin Drug Investig 2004; 24(8): 449–55

    PubMed  CAS  Google Scholar 

  31. Schaberg T, Moller M, File T, et al. Real-life treatment of acute exacerbations of chronic bronchitis with moxifloxacin or macrolides: a comparative post-marketing surveillance study in general practice. Clin Drug Investig 2006; 26(12): 733–44

    PubMed  CAS  Google Scholar 

  32. Zervos M, Martinez FJ, Amsden GW, et al. Efficacy and safety of 3-day azithromycin versus 5-day moxifloxacin for the treatment of acute bacterial exacerbations of chronic bronchitis. Int J Antimicrob Agents 2007 Jan; 29(1): 56–61

    PubMed  CAS  Google Scholar 

  33. Urueta-Robledo J, Ariza H, Jardim JR, et al. Moxifloxacin versus levofloxacin against acute exacerbations of chronic bronchitis: the Latin American Cohort. Respir Med 2006 Sep; 100(9): 1504–11

    PubMed  Google Scholar 

  34. Starakis I, Gogos CA, Bassaris H. Five-day moxifloxacin therapy compared with 7-day co-amoxiclav therapy for the treatment of acute exacerbation of chronic bronchitis. Int J Antimicrob Agents 2004 Feb; 23(2): 129–37

    PubMed  CAS  Google Scholar 

  35. Grassi C, Casali L, Curti E, et al. Efficacy and safety of short course (5-day) moxifloxacin versus 7-day ceftriax-one in the treatment of acute exacerbations of chronic bronchitis (AECB). J Chemother 2002 Dec; 14(6): 597–608

    PubMed  CAS  Google Scholar 

  36. Schaberg T, Ballin I, Huchon G, et al. A multinational, multicentre, non-blinded, randomized study of moxifloxacin oral tablets compared with co-amoxiclav oral tablets in the treatment of acute exacerbation of chronic bronchitis. J Int Med Res 2001 Jul; 29(4): 314–28

    PubMed  CAS  Google Scholar 

  37. Lorenz J, Thate-Waschke IM, Mast O, et al. Treatment outcomes in acute exacerbations of chronic bronchitis: comparison of macrolides and moxifloxacin from the patient perspective. J Int Med Res 2001 Mar; 29(2): 74–86

    PubMed  CAS  Google Scholar 

  38. Barth J, Stauch K, Landen H. Efficacy and tolerability of sequential intravenous/oral moxifloxacin therapy in pneumonia: results of the first post-marketing surveillance study with intravenous moxifloxacin in hospital practice. Clin Drug Investig 2005; 25(11): 691–700

    PubMed  CAS  Google Scholar 

  39. Koch H, Landen H, Stauch K. Once-daily moxifloxacin therapy for community-acquired pneumonia in general practice: evidence from a post-marketing surveillance study of 1467 patients. Clin Drug Investig 2004; 24(8): 441–8

    PubMed  CAS  Google Scholar 

  40. Anzueto A, Niederman MS, Pearle J, et al. Community-Acquired Pneumonia Recovery in the Elderly (CAPRIE): efficacy and safety of moxifloxacin therapy versus that of levofloxacin therapy. Clin Infect Dis 2006 Jan 1; 42(1): 73–81

    PubMed  CAS  Google Scholar 

  41. Morganroth J, Dimarco JP, Anzueto A, et al. A randomized trial comparing the cardiac rhythm safety of moxifloxacin versus levofloxacin in elderly patients hospitalized with community-acquired pneumonia. Chest 2005 Nov; 128(5): 3398–406

    PubMed  CAS  Google Scholar 

  42. Vyas H, Krishnaswamy G. Images in clinical medicine: quinolone-associated rupture of the Achilles’ tendon. N Engl J Med 2007 Nov 15; 357(20): 2067

    PubMed  CAS  Google Scholar 

  43. Hoeffken G, Talan D, Larsen LS, et al. Efficacy and safety of sequential moxifloxacin for treatment of community-acquired pneumonia associated with atypical pathogens. Eur J Clin Microbiol Infect Dis 2004 Oct; 23(10): 772–5

    PubMed  CAS  Google Scholar 

  44. Katz E, Larsen LS, Fogarty CM, et al. Safety and efficacy of sequential i.v. to p.o. moxifloxacin versus conventional combination therapies for the treatment of community-acquired pneumonia in patients requiring initial i.v. therapy. J Emerg Med 2004 Nov; 27(4): 395–405

    PubMed  Google Scholar 

  45. Portier H, Brambilla C, Garre M, et al. Moxifloxacin monotherapy compared to amoxicillin-clavulanate plus roxithromycin for nonsevere community-acquired pneumonia in adults with risk factors. Eur J Clin Microbiol Infect Dis 2005 Jun; 24(6): 367–76

    PubMed  CAS  Google Scholar 

  46. Finch R, Schurmann D, Collins O, et al. Randomized controlled trial of sequential intravenous (i.v.) and oral moxifloxacin compared with sequential i.v. and oral co-amoxiclav with or without clarithromycin in patients with community-acquired pneumonia requiring initial parenteral treatment. Antimicrob Agents Chemother 2002 Jun; 46(6): 1746–54

    PubMed  CAS  Google Scholar 

  47. Torres A, Muir JF, Corris P, et al. Effectiveness of oral moxifloxacin in standard first-line therapy in community-acquired pneumonia. Eur Respir J 2003 Jan; 21(1): 135–43

    PubMed  CAS  Google Scholar 

  48. Hoeffken G, Meyer HP, Winter J, et al. The efficacy and safety of two oral moxifloxacin regimens compared to oral clarithromycin in the treatment of community-acquired pneumonia. Respir Med 2001 Jul; 95(7): 553–64

    PubMed  CAS  Google Scholar 

  49. Hoffken G, Barth J, Rubinstein E, et al. A randomized study of sequential intravenous/oral moxifloxacin in comparison to sequential intravenous ceftriaxone/oral cefuroxime axetil in patients with hospital-acquired pneumonia. Infection 2007 Dec; 35(6): 414–20

    PubMed  CAS  Google Scholar 

  50. Leone R, Venegoni M, Motola D, et al. Adverse drug reactions related to the use of fluoroquinolone antimicrobials: an analysis of spontaneous reports and fluoroquinolone consumption data from three italian regions. Drug Saf 2003; 26(2): 109–20

    PubMed  CAS  Google Scholar 

  51. Van der Linden PD, Sturkenboom MC, Herings RM, et al. Increased risk of achilles tendon rupture with quinolone antibacterial use, especially in elderly patients taking oral corticosteroids. Arch Intern Med 2003 Aug 11; 163(15): 1801–7

    PubMed  Google Scholar 

  52. Roujeau JC, Kelly JP, Naldi L, et al. Medication use and the risk of Stevens-Johnson syndrome or toxic epidermal necrolysis. N Engl J Med 1995 Dec 14; 333(24): 1600–7

    PubMed  CAS  Google Scholar 

  53. Park-Wyllie LY, Juurlink DN, Kopp A, et al. Outpatient gatifloxacin therapy and dysglycemia in older adults. N Engl J Med 2006 Mar 30; 354(13): 1352–61

    PubMed  CAS  Google Scholar 

  54. Motola D, Vargiu A, Leone R, et al. Hepatic adverse drug reactions: a case/non-case study in Italy. Eur J Clin Pharmacol 2007 Jan; 63(1): 73–9

    PubMed  Google Scholar 

  55. Dore DD, DiBello JR, Lapane KL. Telithromycin use and spontaneous reports of hepatotoxicity. Drug Saf 2007; 30(8): 697–703

    PubMed  Google Scholar 

  56. Mehlhorn AJ, Brown DA. Safety concerns with fluoro-quinolones. Ann Pharmacother 2007 Nov; 41(11): 1859–66

    PubMed  Google Scholar 

  57. Simonin MA, Gegout-Pottie P, Minn A, et al. Proteoglycan and collagen biochemical variations during fluoroquinolone-induced chondrotoxicity in mice. Anti-microb Agents Chemother 1999 Dec; 43(12): 2915–21

    CAS  Google Scholar 

  58. Corps AN, Harrall RL, Curry VA, et al. Contrasting effects of fluoroquinolone antibiotics on the expression of the collagenases, matrix metalloproteinases (MMP)-1 and -13, in human tendon-derived cells. Rheumatology (Oxford) 2005 Dec; 44(12): 1514–7

    CAS  Google Scholar 

  59. Stahlmann R, Forster C, Shakibaei M, et al. Magnesium deficiency induces joint cartilage lesions in juvenile rats which are identical to quinolone-induced arthro-pathy. Antimicrob Agents Chemother 1995 Sep; 39(9): 2013–8

    PubMed  CAS  Google Scholar 

  60. Sendzik J, Lode H, Stahlmann R. Quinolone-induced arthropathy: an update focusing on new mechanistic and clinical data. Int J Antimicrob Agents. 2009 Mar; 33(3): 194–200

    PubMed  CAS  Google Scholar 

  61. Khaliq Y, Zhanel GG. Fluoroquinolone-associated tendi-nopathy: a critical review of the literature. Clin Infect Dis 2003 Jun 1; 36(11): 1404–10

    PubMed  Google Scholar 

  62. Melhus A. Fluoroquinolones and tendon disorders. Expert Opin Drug Saf 2005 Mar; 4(2): 299–309

    PubMed  CAS  Google Scholar 

  63. Butler MW, Griffin JF, Quinlan WR, et al. Quinolone-associated tendonitis: a potential problem in COPD? Ir J Med Sci 2001 Jul; 170(3): 198–9

    PubMed  CAS  Google Scholar 

  64. Burkhardt O, Kohnlein T, Pap T, et al. Recurrent tendinitis after treatment with two different fluoroquinolones. Scand J Infect Dis 2004; 36(4): 315–6

    PubMed  Google Scholar 

  65. Iannini PB. Fluoroquinolone toxicity: a review of class-and agent-specific adverse effects. Drug Benefit Trends 2004; Suppl.: 34–41

  66. Wilson R, Allegra L, Huchon G, et al. Short-term and long-term outcomes of moxifloxacin compared to standard antibiotic treatment in acute exacerbations of chronic bronchitis. Chest 2004 Mar; 125(3): 953–64

    PubMed  CAS  Google Scholar 

  67. Salvo F, Polimeni G, Moretti U, et al. Adverse drug reactions related to amoxicillin alone and in association with clavulanic acid: data from spontaneous reporting in Italy. J Antimicrob Chemother 2007 Jul; 60(1): 121–6

    PubMed  CAS  Google Scholar 

  68. Iannini P, Mandell L, Felmingham J, et al. Adverse cutaneous reactions and drugs: a focus on antimicrobials. J Chemother 2006 Apr; 18(2): 127–39

    PubMed  CAS  Google Scholar 

  69. Nori S, Nebesio C, Brashear R, et al. Moxifloxacin-associated drug hypersensitivity syndrome with toxic epidermal necrolysis and fulminant hepatic failure. Arch Dermatol 2004 Dec; 140(12): 1537–8

    PubMed  Google Scholar 

  70. Sidoroff A, Dunant A, Viboud C, et al. Risk factors for acute generalized exanthematous pustulosis (AGEP)-results of a multinational case-control study (Euro-SCAR). Br J Dermatol 2007 Nov; 157(5): 989–96

    PubMed  CAS  Google Scholar 

  71. Johannes CB, Ziyadeh N, Seeger JD, et al. Incidence of allergic reactions associated with antibacterial use in a large, managed care organisation. Drug Saf 2007; 30(8): 705–13

    PubMed  Google Scholar 

  72. De Sarro A, De Sarro G. Adverse reactions to fluoroquinolones. an overview on mechanistic aspects. Curr Med Chem 2001 Mar; 8(4): 371–84

    PubMed  Google Scholar 

  73. Owens Jr RC, Ambrose PG. Antimicrobial safety: focus on fluoroquinolones. Clin Infect Dis 2005 Jul 15; 41 Suppl. 2: S144–57

    PubMed  CAS  Google Scholar 

  74. US Cipro® package insert [online]. Available from URL: http://www.univgraph.com/bayer/inserts/ciprotab.pdf [Accessed 2009 Mar 18]

  75. US Factive® package insert [online]. Available from URL: http://www.factive.com/pdf/prescribing_info.pdf [Accessed 2009 Mar 18]

  76. Kushner JM, Peckman HJ, Snyder CR. Seizures associated with fluoroquinolones. Ann Pharmacother 2001 Oct; 35(10): 1194–8

    PubMed  CAS  Google Scholar 

  77. Lipsky BA, Baker CA. Fluoroquinolone toxicity profiles: a review focusing on newer agents. Clin Infect Dis 1999 Feb; 28(2): 352–64

    PubMed  CAS  Google Scholar 

  78. Lode H. Potential interactions of the extended-spectrum fluoroquinolones with the CNS. Drug Saf 1999 Aug; 21(2): 123–35

    PubMed  CAS  Google Scholar 

  79. Fish DN. Fluoroquinolone adverse effects and drug interactions. Pharmacotherapy 2001 Oct; 21 (10 Pt 2): 253–72S

    Google Scholar 

  80. Ball P, Mandell L, Niki Y, et al. Comparative tolerability of the newer fluoroquinolone antibacterials. Drug Saf 1999 Nov; 21(5): 407–21

    PubMed  CAS  Google Scholar 

  81. Schmuck G, Schurmann A, Schluter G. Determination of the excitatory potencies of fluoroquinolones in the central nervous system by an invitromodel. Antimicrob Agents Chemother 1998 Jul; 42(7): 1831–6

    PubMed  CAS  Google Scholar 

  82. Roden DM. Cellular basis of drug-induced torsades de pointes. Br J Pharmacol 2008 Aug; 154(7): 1502–7

    PubMed  CAS  Google Scholar 

  83. Volberg WA, Koci BJ, Su W, et al. Blockade of human cardiac potassium channel human ether-a-go-go-related gene (HERG) by macrolide antibiotics. J Pharmacol Exp Ther 2002 Jul; 302(1): 320–7

    PubMed  CAS  Google Scholar 

  84. Owens Jr RC, Nolin TD. Antimicrobial-associated QT interval prolongation: pointes of interest. Clin Infect Dis 2006 Dec 15; 43(12): 1603–11

    PubMed  CAS  Google Scholar 

  85. Kang J, Wang L, Chen XL, et al. Interactions of a series of fluoroquinolone antibacterial drugs with the human 376 cardiac K+ channel HERG. Mol Pharmacol 2001 Jan; 59(1): 122–6

    PubMed  CAS  Google Scholar 

  86. Alexandrou AJ, Duncan RS, Sullivan A, et al. Mechanism of hERG K+ channel blockade by the fluoroquinolone antibiotic moxifloxacin. Br J Pharmacol 2006 Apr; 147(8): 905–16

    PubMed  CAS  Google Scholar 

  87. Falagas ME, Rafailidis PI, Rosmarakis ES. Arrhythmias associated with fluoroquinolone therapy. Int J Anti-microb Agents 2007 Apr; 29(4): 374–9

    CAS  Google Scholar 

  88. Brown AM. Drugs hERG and sudden death. Cell Calcium 2004 Jun; 35(6): 543–7

    PubMed  CAS  Google Scholar 

  89. Frothingham R. Rates of torsades de pointes associated with ciprofloxacin, ofloxacin, levofloxacin, gatifloxacin, and moxifloxacin. Pharmacotherapy 2001 Dec; 21(12): 1468–72

    PubMed  CAS  Google Scholar 

  90. Poluzzi E, Raschi E, Moretti U, et al. Drug-induced torsades de pointes: data mining of the public version of the FDA Adverse Event Reporting System (AERS). Phar-macoepidemiol Drug Saf. Epub 2009 Apr 8

  91. Shaffer DN. Macrolide antibiotics and torsade de pointes: postmarketing analysis [online]. Available from URL: http://www.fda.gov/ohrms/dockets/ac/01/slides/3746s_02_shaffer.ppt [Accessed 2008 Jul 23]

  92. US Food and Drug Administration. Adverse event reporting system (AERS) [online]. Available from URL: http://www.fda.gov/cder/aers/default.htm [Accessed 2009 Mar 18]

  93. US Food and Drug Administration. MedWatch: the FDA safety information and adverse event reporting program [online]. Available from URL: www.fda.gov/medwatch [Accessed 2009 Mar 18]

  94. Veyssier P, Voirot P, Begaud B, et al. Cardiac tolerance of moxifloxacin: clinical experience from a large observational French study in usual medical practice (IMMEDIAT study) [in French]. Med Mal Infect 2006 Oct; 36(10): 505–12

    PubMed  CAS  Google Scholar 

  95. Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med 2004 Mar 4; 350(10): 1013–22

    PubMed  CAS  Google Scholar 

  96. Owens Jr RC. QT prolongation with antimicrobial agents: understanding the significance. Drugs 2004; 64(10): 1091–124

    PubMed  CAS  Google Scholar 

  97. Westphal JF. Macrolide-induced clinically relevant drug interactions with cytochrome P-450A (CYP) 3A4: an update focused on clarithromycin, azithromycin and diri-thromycin. Br J Clin Pharmacol 2000 Oct; 50(4): 285–95

    PubMed  CAS  Google Scholar 

  98. Shakeri-Nejad K, Stahlmann R. Drug interactions during therapy with three major groups of antimicrobial agents. Expert Opin Pharmacother 2006 Apr; 7(6): 639–51

    PubMed  CAS  Google Scholar 

  99. Simkó J, Csilek A, Karászi J, et al. Proarrhythmic potential of antimicrobial agents. Infection 2008; 36: 194–206

    PubMed  Google Scholar 

  100. Ball P. Adverse drug reactions: implications for the development of fluoroquinolones. J Antimicrob Chemother 2003 May; 51 Suppl. 1: 21–7

    PubMed  CAS  Google Scholar 

  101. Dale KM, Lertsburapa K, Kluger J, et al. Moxifloxacin and torsade de pointes. Ann Pharmacother 2007 Feb; 41(2): 336–40

    PubMed  CAS  Google Scholar 

  102. Torres A, Garau J, Arvis P, et al. Moxifloxacin monotherapy is effective in hospitalized patients with community-acquired pneumonia. The MOTIV study: a randomized clinical trial. Clin Infect Dis 2008 May 15; 46(10): 1499–509

    PubMed  CAS  Google Scholar 

  103. Chen X, Cass JD, Bradley JA, et al. QT prolongation and proarrhythmia by moxifloxacin: concordance of pre-clinical models in relation to clinical outcome. Br J Pharmacol 2005 Nov; 146(6): 792–9

    PubMed  CAS  Google Scholar 

  104. Barth J, Jäger D, Mundkowski R, et al. Single-and multiple-dose pharmacokinetics of intravenous moxifloxacin in patients with severe hepatic impairment. J Antimicrob Chemother 2008 Sep; 62(3): 575–8

    PubMed  CAS  Google Scholar 

  105. Voss MA. Literature-based evaluation of four ‘hard endpoint’ models for assessing drug-induced torsades de pointes liability. Br J Pharmacol 2008; 154: 1523–7

    Google Scholar 

  106. Wisialowski T, Crimin K, Engtrakul J, et al. Differentiation of arrhythmia risk of the antibacterials moxifloxacin, erythromycin, and telithromycin based on analysis of monophasic action potential duration alternans and cardiac instability. J Pharmacol Exp Ther 2006 Jul; 318(1): 352–9

    PubMed  CAS  Google Scholar 

  107. Andrade RJ, Lucena MI, Fernandez MC, et al. Drug-induced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a 10-year period. Gastroenterology 2005 Aug; 129(2): 512–21

    PubMed  Google Scholar 

  108. De Valle MB, Av KV, Alem N, et al. Drug-induced liver injury in a Swedish University hospital out-patient hepatology clinic. Aliment Pharmacol Ther 2006 Oct 15; 24(8): 1187–95

    PubMed  Google Scholar 

  109. Bjornsson E, Kalaitzakis E, Olsson R. The impact of eo-sinophilia and hepatic necrosis on prognosis in patients with drug-induced liver injury. Aliment Pharmacol Ther 2007 Jun 15; 25(12): 1411–21

    PubMed  CAS  Google Scholar 

  110. Andrade RJ, Lucena MI, Kaplowitz N, et al. Outcome of acute idiosyncratic drug-induced liver injury: long-term follow-up in a hepatotoxicity registry. Hepatology 2006 Dec; 44(6): 1581–8

    PubMed  CAS  Google Scholar 

  111. Bjornsson E, Olsson R. Outcome and prognostic markers in severe drug-induced liver disease. Hepatology 2005 Aug; 42(2): 481–9

    PubMed  Google Scholar 

  112. Chang CY, Schiano TD. Review article: drug hepatotoxicity. Aliment Pharmacol Ther 2007 May 15; 25(10): 1135–51

    PubMed  CAS  Google Scholar 

  113. Robles M, Andrade RJ. Antibiotic induced hepatotoxicity: 2008 update. in Spanish. Rev Esp Quimioter 2008 Dec; 21(4): 224–33

    PubMed  CAS  Google Scholar 

  114. Andrade RJ, Robles M, Fernandez-Castaner A, et al. Assessment of drug-induced hepatotoxicity in clinical practice: a challenge for gastroenterologists. World J Gastroenterol 2007 Jan 21; 13(3): 329–40

    PubMed  CAS  Google Scholar 

  115. Lucena MI, Garcia-Cortes M, Cueto R, et al. Assessment of drug-induced liver injury in clinical practice. Fundam Clin Pharmacol 2008 Apr; 22(2): 141–58

    PubMed  CAS  Google Scholar 

  116. Nathwani RA, Kaplowitz N. Drug hepatotoxicity. Clin Liver Dis 2006 May; 10(2): 207–17, vii

    PubMed  Google Scholar 

  117. Moseley RH. Sepsis and cholestasis. Clin Liver Dis 2004 Feb; 8(1): 83–94

    PubMed  Google Scholar 

  118. Pessayre D, Larrey D, Funck-Brentano C, et al. Drug interactions and hepatitis produced by some macrolide antibiotics. J Antimicrob Chemother 1985 Jul; 16 Suppl. A: 181–94

    PubMed  CAS  Google Scholar 

  119. Freneaux E, Labbe G, Letteron P, et al. Inhibition of the mitochondrial oxidation of fatty acids by tetracycline in mice and in man: possible role in microvesicular steatosis 377 induced by this antibiotic. Hepatology 1988 Sep; 8(5): 1056–62

    PubMed  CAS  Google Scholar 

  120. Blum MD, Graham DJ, McCloskey CA. Temafloxacin syndrome: review of 95 cases. Clin Infect Dis 1994 Jun; 18(6): 946–50

    PubMed  CAS  Google Scholar 

  121. Chen HJ, Bloch KJ, Maclean JA. Acute eosinophilic hepatitis from trovafloxacin. N Engl J Med 2000 Feb 3; 342(5): 359–60

    PubMed  CAS  Google Scholar 

  122. Lucena MI, Andrade RJ, Rodrigo L, et al. Trovafloxacin-induced acute hepatitis. Clin Infect Dis 2000 Feb; 30(2): 400–1

    PubMed  CAS  Google Scholar 

  123. Sun Q, Zhu R, Foss FW, et al. Invitrometabolism of a model cyclopropylamine to reactive intermediate: insights into trovafloxacin-induced hepatotoxicity. Chem Res Toxicol 2008 Mar; 21(3): 711–9

    PubMed  CAS  Google Scholar 

  124. Shaw PJ, Ditewig AC, Waring JF, et al. Coexposure of mice to trovafloxacin and lipopolysaccharide, a model of idiosyncratic hepatotoxicity, results in a unique gene expression profile and interferon gamma-dependent liver injury. Toxicol Sci 2009 Jan; 107(1): 270–80

    PubMed  CAS  Google Scholar 

  125. Benichou C. Criteria of drug-induced liver disorders: report of an international consensus meeting. J Hepatol 1990 Sep; 11(2): 272–6

    PubMed  CAS  Google Scholar 

  126. Sabate M, Ibanez L, Perez E, et al. Risk of acute liver injury associated with the use of drugs: a multicentre population survey. Aliment Pharmacol Ther 2007 Jun 15; 25(12): 1401–9

    PubMed  CAS  Google Scholar 

  127. Galan MV, Potts JA, Silverman AL, et al. The burden of acute nonfulminant drug-induced hepatitis in a United States tertiary referral center [corrected]. J Clin Gastro-enterol 2005 Jan; 39(1): 64–7

    Google Scholar 

  128. Bjornsson E, Olsson R. Suspected drug-induced liver fatalities reported to the WHO database. Dig Liver Dis 2006 Jan; 38(1): 33–8

    PubMed  CAS  Google Scholar 

  129. Sgro C, Clinard F, Ouazir K, et al. Incidence of drug-induced hepatic injuries: a French population-based study. Hepatology 2002 Aug; 36(2): 451–5

    PubMed  Google Scholar 

  130. de Abajo FJ, Montero D, Madurga M, et al. Acute and clinically relevant drug-induced liver injury: a population based case-control study. Br J Clin Pharmacol 2004 Jul; 58(1): 71–80

    PubMed  Google Scholar 

  131. Garcia Rodriguez LA, Stricker BH, Zimmerman HJ. Risk of acute liver injury associated with the combination of amoxicillin and clavulanic acid. Arch Intern Med 1996 Jun 24; 156(12): 1327–32

    PubMed  CAS  Google Scholar 

  132. Perez GS, Garcia Rodriguez LA. The increased risk of hospitalizations for acute liver injury in a population with exposure to multiple drugs. Epidemiology 1993 Nov; 4(6): 496–501

    Google Scholar 

  133. Rullo B. Hepatic safety experience [online]. Available from URL: http://www.fda.gov/ohrms/dockets/ac/06/slides/2006-4266s1-02-07-%20Ketek-Rullo.pdf [Accessed 2008 Jul 7]

  134. Brinker A. Telithromycin-associated hepatotoxicity [online]. Available from URL: http://www.fda.gov/ohrms/dockets/AC/06/slides/2006-4266s1-01-07-FDA-Brinker.ppt [Accessed 2008 Jul 7]

  135. US Augmentin® package insert [online]. Available from URL: http://us.gsk.com/products/assets/us_augmentin.pdf [Accessed 2008 Jul 7]

  136. Karim A, Ahmed S, Rossoff LJ, et al. Possible levofloxacin-induced acute hepatocellular injury in a patient with chronic obstructive lung disease. Clin Infect Dis 2001 Dec 15; 33(12): 2088–90

    PubMed  CAS  Google Scholar 

  137. Coban S, Ceydilek B, Ekiz F, et al. Levofloxacin-induced acute fulminant hepatic failure in a patient with chronic hepatitis B infection. Ann Pharmacother 2005 Oct; 39(10): 1737–40

    PubMed  Google Scholar 

  138. Schwalm JD, Lee CH. Acute hepatitis associated with oral levofloxacin therapy in a hemodialysis patient. CMAJ 2003 Apr 1; 168(7): 847–8

    PubMed  Google Scholar 

  139. Soto S, Lopez-Roses L, Avila S, et al. Moxifloxacin-induced acute liver injury. Am J Gastroenterol 2002 Jul; 97(7): 1853–4

    PubMed  Google Scholar 

  140. Electronic Medicines Compendium (eMC). Summary of product characteristics: Avelox 400 mg tablets [online]. Available from URL: http://emc.medicines.org.uk/medicine/11841/SPC/Avelox+400+mg+Tablets/ [Accessed 2009 Mar 31]

  141. Maeda N, Tamagawa T, Niki I, et al. Increase in insulin release from rat pancreatic islets by quinolone antibiotics. Br J Pharmacol 1996 Jan; 117(2): 372–6

    PubMed  CAS  Google Scholar 

  142. Lewis RJ, Mohr III JF. Dysglycaemias and fluoro-quinolones. Drug Saf 2008; 31(4): 283–92

    PubMed  CAS  Google Scholar 

  143. Kagansky N, Levy S, Rimon E, et al. Hypoglycemia as a predictor of mortality in hospitalized elderly patients. Arch Intern Med 2003 Aug 11; 163(15): 1825–9

    PubMed  Google Scholar 

  144. Owens Jr RC. Fluoroquinolone-associated dysglycemias: a tale of two toxicities. Pharmacotherapy 2005 Oct; 25(10): 1291–5

    PubMed  CAS  Google Scholar 

  145. Shilo S, Berezovsky S, Friedlander Y, et al. Hypoglycemia in hospitalized nondiabetic older patients. J Am Geriatr Soc 1998 Aug; 46(8): 978–82

    PubMed  CAS  Google Scholar 

  146. Mohr JF, McKinnon PS, Peymann PJ, et al. A retrospective, comparative evaluation of dysglycemias in hospitalized patients receiving gatifloxacin, levofloxacin, ciprofloxacin, or ceftriaxone. Pharmacotherapy 2005 Oct; 25(10): 1303–9

    PubMed  CAS  Google Scholar 

  147. Graumlich JF, Habis S, Avelino RR, Gaynes RP, et al. Hypoglycemia in inpatients after gatifloxacin or levofloxacin therapy: nested case-control study. Pharmacotherapy 2005 Oct; 25(10): 1296–302

    PubMed  CAS  Google Scholar 

  148. Owens Jr RC, Donskey CJ, Gaynes P, et al. Antimicrobial-associated risk factors for Clostridiumdifficile infection. Clin Infect Dis 2008 Jan 15; 46 Suppl. 1: S19–31

    PubMed  Google Scholar 

  149. McFarland LV, Clarridge JE, Beneda HW, et al. Fluoro-quinolone use and risk factors for Clostridiumdifficile-associated disease within a Veterans Administration health care system. Clin Infect Dis 2007 Nov 1; 45(9): 1141–51

    PubMed  Google Scholar 

  150. Pepin J, Saheb N, Coulombe MA, et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridiumdifficile-associateddiarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis 2005 Nov 1; 41(9): 1254–60

    PubMed  CAS  Google Scholar 

  151. Gaynes R, Rimland D, Killum E, et al. Outbreak of Clostridiumdifficileinfection in a long-term care facility: association with gatifloxacin use. Clin Infect Dis 2004 Mar 1; 38(5): 640–5

    PubMed  Google Scholar 

  152. Dhalla IA, Mamdani MM, Simor AE, et al. Are broad-spectrum fluoroquinolones more likely to cause 378 Clostridiumdifficile-associateddisease? Antimicrob Agents Chemother 2006 Sep; 50(9): 3216–9

    PubMed  CAS  Google Scholar 

  153. Biller P, Shank B, Lind L, et al. Moxifloxacin therapy as a risk factor for Clostridiumdifficile-associateddisease during an outbreak: attempts to control a new epidemic strain. Infect Control Hosp Epidemiol 2007 Feb; 28(2): 198–201

    PubMed  Google Scholar 

  154. Blondeau JM. What have we learned about antimicrobial use and the risks for Clostridiumdifficile-associateddiarrhoea? J Antimicrob Chemother 2009 Feb; 63(2): 238–42

    PubMed  CAS  Google Scholar 

  155. Generali J. Black box warnings from the FDA [online]. Available from URL: http://www.formularyproductions.com/blackbox/ [Accessed 2008 Jul 9]

  156. US Ceftin® package insert [online]. Available from URL: http://us.gsk.com/products/assets/us_ceftintablets.pdf [Accessed 2008 Jul 9]

  157. US Biaxin® package insert [online]. Available from URL: http://www.rxabbott.com/pdf/biapi.pdf [Accessed 2008 Jul 9]

  158. US Zithromax® package insert [online]. Available from URL: http://media.pfizer.com/files/products/uspi_zithromax.pdf [Accessed 2008 Jul 9]

  159. US Ketek® package insert [online]. Available from URL: http://products.sanofi-aventis.us/ketek/Ketek.pdf [Accessed 2008 Jul 9]

  160. Iannini PB. The safety profile of moxifloxacin and other fluoroquinolones in special patient populations. Curr Med Res Opin 2007 Jun; 23(6): 1403–13

    PubMed  CAS  Google Scholar 

  161. Wilson R, Jones P, Schaberg T, et al. Antibiotic treatment and factors influencing short and long term outcomes of acute exacerbations of chronic bronchitis. Thorax 2006 Apr; 61(4): 337–42

    PubMed  CAS  Google Scholar 

  162. Keating KN, Friedman HS, Perfetto EM. Moxifloxacin versus levofloxacin for treatment of acute rhinosinusitis: a retrospective database analysis of treatment duration, outcomes, and charges. Curr Med Res Opin 2006 Feb; 22(2): 327–33

    PubMed  CAS  Google Scholar 

  163. Simoens S, Decramer M, Laekeman G, et al. Respir Med 2007 Jan; 101(1): 15–26

    PubMed  Google Scholar 

  164. Llor C, Naberan K, Cots JM, et al. Economic evaluation of the antibiotic treatment of exacerbations of chronic bronchitis and COPD in primary care. Int J Clin Pract 2004 Oct; 58(10): 937–44

    PubMed  CAS  Google Scholar 

  165. Martin M, Moore L, Quilici S, et al. A cost-effectiveness analysis of antimicrobial treatment of community-acquired pneumonia taking into account resistance in Belgium. Curr Med Res Opin 2008 Mar; 24(3): 737–51

    PubMed  Google Scholar 

  166. Martin M, Quilici S, File T, et al. Cost-effectiveness of empirical prescribing of antimicrobials in community-acquired pneumonia in three countries in the presence of resistance. J Antimicrob Chemother 2007 May; 59(5): 977–89

    PubMed  CAS  Google Scholar 

  167. Drummond MF, Becker DL, Hux M, et al. An economic evaluation of sequential i.v./po moxifloxacin therapy compared to i.v./po co-amoxiclav with or without clari-thromycin in the treatment of community-acquired pneumonia. Chest 2003 Aug; 124(2): 526–35

    PubMed  Google Scholar 

  168. Bauer TT, Welte T, Ernen C, et al. Cost analyses of community-acquired pneumonia from the hospital perspective. Chest 2005 Oct; 128(4): 2238–46

    PubMed  Google Scholar 

  169. Davis SL, Delgado G, McKinnon S. Pharmacoeconomic considerations associated with the use of intravenous-to-oral moxifloxacin for community-acquired pneumonia. Clin Infect Dis 2005 Jul 15; 41 Suppl. 2: S136–43

    PubMed  Google Scholar 

  170. Simoens S, Decramer M. A pharmacoeconomic review of the management of respiratory tract infections with moxifloxacin. Expert Opin Pharmacother 2008 Jul; 9(10): 1735–44

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor P. Ball (School of Biomedical Sciences, St Andrews University, St Andrews, Fife, UK) for critical reading of this review. Françoise Van Bambeke is Maître de recherches of the Belgian FondsdelaRecherche Scientifique. Both authors are members of the Belgian Advisory Board of Bayer-Belgium. No sources of funding were used to assist in the preparation of this review.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Bambeke, F., Tulkens, P.M. Safety Profile of the Respiratory Fluoroquinolone Moxifloxacin. Drug-Safety 32, 359–378 (2009). https://doi.org/10.2165/00002018-200932050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200932050-00001

Keywords

Navigation