Skip to main content
Log in

Drug-Induced Hyperhidrosis and Hypohidrosis

Incidence, Prevention and Management

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

The human sweating response is subject to the influence of diverse classes of drugs. Some act centrally at the hypothalamus or at spinal thermoregulatory centres, while others act at sympathetic ganglia or at the eccrine-neuroeffector junction. Pharmacological disturbances of sweating have broad clinical implications. Drugs that induce hyperhidrosis, or sweating in excess of that needed to maintain thermoregulation, can cause patient discomfort and embarrassment, and include cholinesterase inhibitors, selective serotonin reuptake inhibitors, opioids and tricyclic antidepressants. Drugs that induce hypohidrosis, or deficient sweating, can increase the risk of heat exhaustion or heat stroke and include antimuscarinic anticholinergic agents, carbonic anhydrase inhibitors and tricyclic antidepressants. As acetylcholine is the principal neuroeccrine mediator, anhidrosis is one of the clinical hallmarks by which acute anticholinergic toxicity may be recognized. The symptom of dry mouth often accompanies the less apparent symptom of hypohidrosis because the muscarinic M3 acetylcholine receptor type predominates at both sweat and salivary glands. Management options include dose reduction, drug substitution or discontinuation. When compelling medical indications require continuation of a drug causing hyperhidrosis, the addition of a pharmacological agent to suppress sweating can help to reduce symptoms. When hypohidrotic drugs must be continued, deficient sweating can be managed by avoiding situations of heat stress and cooling the skin with externally applied water. The availability of clinical tests for the assessment of sudomotor dysfunction in neurological disease has enhanced recognition of the complex effects of drugs on sweating. Advances in the understanding of drug-induced anhidrosis have also enlarged the therapeutic repertoire of effective treatments for hyperhidrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cabanac M. Temperature regulation. Annu Rev Physiol 1975; 37: 415–39

    Article  PubMed  CAS  Google Scholar 

  2. Ogawa T, Low PA. Autonomic regulation of temperature and sweating. In: Low PA, editor. Clinical autonomic disorders: evaluation and management. 2nd ed. Philadelphia (PA): Lippincott-Raven, 1997: 83–96

    Google Scholar 

  3. Fealey RD. Thermoregulatory failure. In: Appenzeller O, editor. The autonomic nervous system II. Amsterdam: Elsevier, 2000: 53–84

    Google Scholar 

  4. Strutton DR, Kowalski JW, Glaser DA, et al. U.S. prevalence of hyperhidrosis and impact on individuals with axillary hyperhidrosis: results from a national survey. J Am Acad Dermatol 2004; 51: 241–8

    Article  PubMed  Google Scholar 

  5. Goldsmith R, Fox RH, Hampton IFG. Effects of drugs on heat acclimatization by controlled hyperthermia. J Appl Physiol 1967; 22: 301–4

    PubMed  CAS  Google Scholar 

  6. Vimieiro-Gomes AC, Magalhães FC, Amorim FT, et al. Comparison of sweat rate during graded exercise and the local rate induced by pilocarpine. Braz J Med Biol Res 2005; 38: 1133–9

    Article  PubMed  CAS  Google Scholar 

  7. Bouchama A, Knochel JP. Heat stroke. New Engl J Med 2002; 346: 1978–88

    Article  PubMed  CAS  Google Scholar 

  8. Remillard AJ. A pharmacoepidemiological evaluation of anti-cholinergic prescribing patterns in the elderly. Pharmacoepidemiol Drug Saf 1996; 5: 155–64

    Article  PubMed  CAS  Google Scholar 

  9. Blazer 2nd DG, Federspiel CF, Ray WA, et al. The risk of anticholinergic toxicity in the elderly: a study of prescribing practices in two populations. J Gerontol 1983; 38: 31–5

    Article  PubMed  Google Scholar 

  10. Ness J, Hoth A, Barnett MJ, et al. Anticholinergic medications in community-dwelling older veterans: prevalence of anticholinergic symptoms, symptom burden, and adverse drug events. Am J Geriatr Pharmacother 2006; 4: 42–51

    Article  PubMed  CAS  Google Scholar 

  11. Center for Disease Control and Prevention (CDC). Heat-related deaths —United States, 1999–2003. MMWR Morb Mortal Wkly Rep 2006; 55(29): 796–8

    Google Scholar 

  12. de Carolis P, Magnifico F, Pierangeli G, et al. Transient hypohidrosis induced by topiramate. Epilepsia 2003; 44: 974–6

    Article  PubMed  Google Scholar 

  13. Arcas J, Ferrer T, Roche MC, et al. Hypohidrosis related to the administration of topiramate to children. Epilepsia 2001; 42: 1363–5

    Article  PubMed  CAS  Google Scholar 

  14. Cerminara C, Seri S, Bombardieri R, et al. Hypohidrosis during topiramate treatment: a rare and reversible side effect. Pediatr Neurol 2006; 34: 392–4

    Article  PubMed  Google Scholar 

  15. Patel RJ, Saylor T, Williams SR, et al. Prevalence of autonomic signs and symptoms in antimuscarinic drug poisonings. J Emerg Med 2004; 26: 89–94

    Article  PubMed  Google Scholar 

  16. Galicia SC, Lewis SL, Metman LV. Severe topiramate-associated hyperthermia resulting in persistent neurological dysfunction. Clin Neuropharmacol 2005; 28: 94–5

    Article  PubMed  Google Scholar 

  17. Ben-Zeev B, Watemberg N, Augarten A, et al. Oligohydrosis and hyperthermia: pilot study of a novel topiramate adverse effect. J Child Neurol 2003; 18: 254–7

    Article  PubMed  Google Scholar 

  18. Kaiser R, Rubin CH, Henderson AK, et al. Heat-related death and mental illness during the 1999 Cincinnati heat wave. Am J Forensic Med Pathol 2001; 22: 303–7

    Article  PubMed  CAS  Google Scholar 

  19. Fisher A, Pittel Z, Haring B, et al. M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer’s disease: implications in future therapy. J Mol Neurosci 2003; 20: 349–56

    Article  PubMed  CAS  Google Scholar 

  20. Sato K, Sato F. Individual variations in structure and function of human eccrine sweat gland. Am J Physiol 1983; 245(2): R203–8

    PubMed  CAS  Google Scholar 

  21. Robinson S, Belding HS, Consolazio FC, et al. Acclimatization of older men to work in the heat. J Appl Physiol 1965; 20: 583–6

    PubMed  CAS  Google Scholar 

  22. Stephenson LA, Wenger CB, O’Donovan BH, et al. Circadian rhythm in sweating and cutaneous blood flow. Am J Physiol Regul Integr Comp Physiol 1984; 246: R321–4

    CAS  Google Scholar 

  23. Cheshire WP, Freeman R. Disorders of sweating. Semin Neurol 2003; 23(4): 399–406

    Article  PubMed  Google Scholar 

  24. Craig FN. Inhibition of sweating by salts of hyoscine and hyoscyamine. J Appl Physiol 1970; 28: 779–83

    PubMed  CAS  Google Scholar 

  25. Kennedy WR, Wendelschafer-Crabb G, Brelje TC. Innervation and vasculature of human sweat glands: an immunohis-tochemistry-laser scanning confocal fluorescence microscopy study. J Neurosci 1994; 14: 6825–33

    PubMed  CAS  Google Scholar 

  26. Sato A, Schmidt RF. Somatosympathetic reflexes: afferent fibers, central pathways, discharge characteristics. Physiol Rev 1973; 53: 916–47

    Google Scholar 

  27. Quinton PM. Sweating and its disorders. Annu Rev Med 1983; 34: 429–52

    Article  PubMed  CAS  Google Scholar 

  28. Sato K, Sato F. Defective beta adrenergic response of cystic fibrosis sweat glands in vivo and in vitro. J Clin Invest 1984; 73: 1763–71

    Article  PubMed  CAS  Google Scholar 

  29. Wenger B, Quigley MD, Kolka MA. Seven-day pyridostigmine administration and thermoregulation during rest and exercise in dry heat. Aviat Space Environ Med 1993; 64: 905–11

    PubMed  CAS  Google Scholar 

  30. Marcy TR, Britton ML. Antidepressant-induced sweating. Ann Pharmacother 2005; 39: 748–52

    Article  PubMed  Google Scholar 

  31. Edwards JG, Anderson I. Systematic review and guide to selection of selective serotonin reuptake inhibitors. Drugs 1999; 57: 507–33

    Article  PubMed  CAS  Google Scholar 

  32. Trindade E, Menon D, Topfer L-A, et al. Adverse effects associated with selective serotonin reuptake inhibitors and tricyclic antidepressants: a meta-analysis. CMAJ 1998; 159: 1245–52

    PubMed  CAS  Google Scholar 

  33. Beasley CM Jr, Koke SC, Nilsson ME, et al. Adverse events and treatment discontinuations in clinical trials of fluoxetine in major depressive disorder: an updated meta-analysis. Clin Ther 2000; 22: 1319–30

    Article  PubMed  CAS  Google Scholar 

  34. Wohlreich MM, Mallinckrodt CH, Prakash A, et al. Duloxetine for the treatment of major depressive disorder: safety and tolerability associated with dose escalation. Depress Anxiety 2007; 24: 41–52

    Article  PubMed  CAS  Google Scholar 

  35. Gahimer J, Wernicke J, Yalcin I, et al. A retrospective pooled analysis of duloxetine safety in 23,983 subjects. Curr Med Res Opin 2007; 23: 175–84

    Article  PubMed  CAS  Google Scholar 

  36. Dunkley EJ, Isbister GK, Sibbritt D, et al. The Hunter Serotonin Toxicity Criteria: simple and accurate diagnostic decision rules for serotonin toxicity. QJM 2003; 96: 635–42

    Article  PubMed  CAS  Google Scholar 

  37. Kockler DR, McCarthy MW. Antidepressants as a treatment for hot flashes in women. Am J Health Syst Pharm 2004; 61: 287–92

    PubMed  CAS  Google Scholar 

  38. Kumar H, Sony P, Gupta V. Profound sweating episodes and latanoprost [letter]. Clin Experiment Ophthalmol 2005; 33: 675

    Article  PubMed  Google Scholar 

  39. Schmidtborn F. Systemic side-effects of lantanoprost in a child with aniridia and glaucoma. Ophthalmologe 1998; 95: 633–4

    Article  PubMed  CAS  Google Scholar 

  40. Gorsky M, Epstein JB, Parry J, et al. The efficacy of pilocarpine and bethanechol upon saliva production in cancer patients with hyposalivation following radiation therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004; 97: 190–5

    Article  PubMed  Google Scholar 

  41. Adler MW, Geller EB, Rosow CE, et al. The opioid system and temperature regulation. Ann Rev Pharmacol Tixocol 1988; 28: 429–49

    Article  CAS  Google Scholar 

  42. Kim OM, Lim GH, Lim DY. Influence of naloxone on catecholamine release evoked by nicotinic receptor stimulation in the isolated rat adrenal gland. Arch Pharm Res 2005; 28: 699–708

    Article  PubMed  CAS  Google Scholar 

  43. Baker AK, Meert TF. Functional effects of systemically administered agonists and antagonists of μ, δ, and κ opioid receptor subtypes on body temperature in mice. J Pharmacol Exp Ther 2002; 302: 1253–64

    Article  PubMed  CAS  Google Scholar 

  44. Xin L, Geller EB, Adler MW. Body temperature and analgesic effects of selective mu and kappa opioid receptor agonists microdialyzed into rat brain. J Pharmacol Exp Ther 1997; 281: 499–507

    PubMed  CAS  Google Scholar 

  45. Ikeda T, Kurz A, Sessler DI, et al. The effect of opioids on thermoregulatory responses in humans and the special antishivering action of meperidine. Ann N Y Acad Sci 1997; 813: 792–8

    Article  PubMed  CAS  Google Scholar 

  46. Al-Adwani A, Basu N. Methadone and excessive sweating [letter]. Addiction 2004; 99: 259

    PubMed  CAS  Google Scholar 

  47. Catterall RA. Problems of sweating and transfermal fentanyl. Palliat Med 1997; 11: 169–70

    PubMed  CAS  Google Scholar 

  48. Buajordet I, Naess AC, Jacobsen D, et al. Adverse events after naloxone treatment of episodes of suspected acute opioid overdose. Eur J Emerg Med 2004; 11: 19–23

    Article  PubMed  Google Scholar 

  49. Johnson AD, Peoples J, Stornetta RL, et al. Opioid circuits originating from the nucleus paragigantocellularis and their potential role in opiate withdrawal. Brain Res 2002; 955: 72–84

    Article  PubMed  CAS  Google Scholar 

  50. Bhatnagar S, Saxena A, Kannan TR, et al. Tramadol for postoperative shivering: a double-blind comparison with pethidine. Anaesth Intensive Care 2001; 29: 149–54

    PubMed  CAS  Google Scholar 

  51. Chainani-Wu N, Gorsky M, Mayer P, et al. Assessment of the use of sialogogues in the clinical management of patients with xerostomia. Spec Care Dentist 2006; 26: 164–70

    Article  PubMed  Google Scholar 

  52. Papas AS, Sherrer YS, Charney M, et al. Successful treatment of dry mouth and dry eye symptoms in Sjogren’s syndrome patients with oral pilocarpine: a randomized, placebo-controlled, dose-adjustment study. J Clin Rheumatol 2004; 10: 169–77

    Article  PubMed  Google Scholar 

  53. Petrone D, Condemi JJ, Fife R, et al. A double-blind, randomized, placebo-controlled study of cevimeline in Sjogren’s syndrome patients with xerostomia and keratoconjunctivitis sicca. Arthritis Rheum 2002; 46: 748–54

    Article  PubMed  CAS  Google Scholar 

  54. West R, Gossop M. Overview: a comparison of withdrawal symptoms from different drug classes. Addiction 1994; 89: 1483–9

    Article  PubMed  CAS  Google Scholar 

  55. Saxena K, Saxena S. Scopolamine withdrawal syndrome. Postgrad Med 1990; 87: 63–6

    PubMed  CAS  Google Scholar 

  56. Low PA, Opfer-Gehrking TL, Kihara M. In vivo studies on receptor pharmacology of the human eccrine sweat gland. Clin Auton Res 1992; 2: 29–34

    Article  PubMed  CAS  Google Scholar 

  57. Byerly MJ, Weber MT, Brooks DL, et al. Antipsychotic medications and the elderly: effects on cognition and implications for use. Drugs Aging 2001; 18: 45–61

    Article  PubMed  CAS  Google Scholar 

  58. Torres NE, Zollman PJ, Low PA. Characterization of muscarinic receptor subtype of rat eccrine sweat gland by autoradiography. Brain Res 1991; 550: 129–32

    Article  PubMed  CAS  Google Scholar 

  59. Micromedex [online]. Available from URL: http://www.micromedex.com [Accessed 2007 Dec 13]

  60. Thomson Healthcare. Physicians’ Desk Reference. 62nd ed. Montvale (NJ): Thomson Healthcare, 2007

    Google Scholar 

  61. DRUGDEX® System. Drug information for the health care professional database [online]. Available from URL: http://www.micromedex.com/products/drugdex/ [Accessed 2007 Dec 13]

  62. Staskin DR, MacDiarmid SA. Using anticholinergics to treat overactive bladder: the issue of treatment tolerability. Am J Med 2006; 119: 9S–15S

    Article  CAS  Google Scholar 

  63. Ouslander JG. Management of overactive bladder. N Engl J Med 2004; 350: 786–99

    Article  PubMed  CAS  Google Scholar 

  64. Arnold SE, Kahn RJ, Faldetta LL, et al. Tricyclic antidepressnats and peripheral anticholinergic activity. Psychopharmacol 1983; 74: 325–8

    Google Scholar 

  65. Feinberg M. The problems of anticholinergic adverse effects in older patients. Drugs Aging 1993; 3: 335–48

    Article  PubMed  CAS  Google Scholar 

  66. Hashim H, Abrams P. Drug treatment of overactive bladder: efficacy, cost and quality of life considerations. Drugs 2004; 64: 1643–56

    Article  PubMed  CAS  Google Scholar 

  67. Dmochowski R. Improving the tolerability of anticholinergic agents in the treatment of overactive bladder. Drug Saf 2005; 28: 583–600

    Article  PubMed  CAS  Google Scholar 

  68. Shelley WB, Horvath PN. Comparative study on the effect of anticholinergic compounds on sweating. J Invest Dermatol 1951; 16: 267–74

    PubMed  CAS  Google Scholar 

  69. Richelson E. Pharmacology of antidepressants. Mayo Clin Proc 2001; 76: 511–27

    Article  PubMed  CAS  Google Scholar 

  70. Geiss LS, Pan L, Cadwell B, et al. Changes in incidence of diabetes in U.S. adults, 1997–2003. Am J Prev Med 2006; 30: 371–7

    Article  PubMed  Google Scholar 

  71. Dyck PJ, Kratz KM, Karnes JL, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 1993; 43: 817–24

    Article  PubMed  CAS  Google Scholar 

  72. Berger A, Dukes E, Edelsberg J, et al. Use of tricyclic antidepressants in older patients with diabetic peripheral neuropathy. Clin J Pain 2007; 23: 251–8

    Article  PubMed  Google Scholar 

  73. Penttila J, Syvalahti E, Hinkka S, et al. The effects of amitriptyline, citalopram and reboxetine on autonomic nervous system. A randomised placebo-controlled study on healthy volunteers. Psychopharmacology (Berl) 2001; 154: 343–9

    Article  CAS  Google Scholar 

  74. Rechlin T, Weis M, Claus D. Heart rate variability in depressed patients and differential effects of paroxetine and amitriptyline on cardiovascular autonomic functions. Pharmacopsychiatry 1994; 27: 124–8

    Article  PubMed  CAS  Google Scholar 

  75. Low PA, Opfer-Gehrking TL. Differential effects of amitriptyline on sudomotor, cardiovagal, and adrenergic function in human subjects. Muscle Nerve 1992; 15: 1340–4

    Article  PubMed  CAS  Google Scholar 

  76. Knudsen JF, Thambi LR, Kapcala LP, et al. Olidohydrosis and fever in pediatric patients treated with zonisamide. Pediatr Neurol 2003; 28: 184–9

    Article  PubMed  Google Scholar 

  77. Orzechowski RF, Currie DS, Valancius CA. Comparative anticholinergic activities of 10 histamine H1 receptor antagonists in two functional models. Eur J Pharmacol 2005; 506: 257–64

    Article  PubMed  CAS  Google Scholar 

  78. Kubo N, Shirakawa O, Kuno T, et al. Antimuscarinic effects of antihistamines: quantitative evaluation by receptor-binding assay. Jpn J Pharmacol 1987; 43: 277–82

    Article  PubMed  CAS  Google Scholar 

  79. Mack GW, Shannon LM, Nadel ER. Influence of beta-adrenergic blockade on the control of sweating in humans. J Appl Physiol 1986; 61: 1701–5

    PubMed  CAS  Google Scholar 

  80. Sato K, Sato F. Pharmacologic responsiveness of isolated single eccrine sweat glands. Am J Physiol 1981; 240: R44–51

    PubMed  CAS  Google Scholar 

  81. Chemali KR, Gorodeski R, Chelimsky TC. Alpha-adrenergic supersensitivity of the sudomotor nerve in complex regional pain syndrome. Ann Neurol 2001; 49: 453–9

    Article  PubMed  CAS  Google Scholar 

  82. Eisenach JH, Atkinson JLD, Fealey RD. Hyperhidrosis: evolving therapies for a well-established phenomenon. Mayo Clin Proc 2005; 80: 657–66

    Article  PubMed  Google Scholar 

  83. Torch EM. Remission of facial and scalp hyperhidrosis successfully treated with clonidine hydrochloride and topical aluminum chloride [letter]. South Med J 2000; 93: 68–69. Published correction appears in South Med J 2000; 93: 264

    PubMed  CAS  Google Scholar 

  84. Snyder SH, Yamamura HI. Antidepressants and the muscarinic acetylcholine receptor. Arch Gen Psychiatry 1977; 34: 236–9

    Article  PubMed  CAS  Google Scholar 

  85. Chew ML, Mulsant BH, Pollock BG, et al. A model of anticholinergic activity of atypical antipsychotic medications. Schizophr Res 2006; 88: 63–72

    Article  PubMed  Google Scholar 

  86. Cheshire WP. Subcutaneous botulinum toxin type A inhibits regional sweating: an individual observation. Clin Auton Res 1996; 6: 123–4

    Article  PubMed  CAS  Google Scholar 

  87. Schlereth T, Mouka I, Eisenbarth G, et al. Botulinum toxin A (Botox) and sweating-dose efficacy and comparison to other BoNT preparations. Auton Neurosci 2005; 117: 120–6

    Article  PubMed  CAS  Google Scholar 

  88. Longmore J, Bradshaw CM, Szabadi E. Effects of locally and systemically administered cholinoceptor antagonists on the secretory response of human eccrine sweat glands to carbachol. Br J Clin Pharmacol 1985; 20: 1–7

    Article  PubMed  CAS  Google Scholar 

  89. Goldstein DS, Pechnik S, Moak J, et al. Painful sweating. Neurology 2004; 63: 1471–5

    Article  PubMed  Google Scholar 

  90. Adubofour KO, Kajiwara GT, Goldberg CM, et al. Oxybutynin-induced heatstroke in an elderly patient. Ann Pharmacother 1996; 30: 144–7

    PubMed  CAS  Google Scholar 

  91. Halloran LL, Bernard DW. Management of drug-induced hyperthermia. Curr Opin Pediatr 2004; 16: 211–5

    Article  PubMed  Google Scholar 

  92. Rosenberg J, Pentel P, Pond S, et al. Hyperthermia associated with drug intoxication. Crit Care Med 1986; 14: 964–9

    Article  PubMed  CAS  Google Scholar 

  93. Hantson P, Benaissa M, Clemessy JL, et al. Hyperthermia complicating tricyclic antidepressant overdose. Intensive Care Med 1997; 23: 480–1

    Google Scholar 

  94. O’Riordan W, Gillette P, Calderon J, et al. Overdose of cyclobenzaprine, the tricyclic muscle relaxant. Ann Emerg Med 1986; 15: 592–3

    Article  PubMed  Google Scholar 

  95. Kwok JSS, Chan TYK. Recurrent heat-related illnesses during antipsychotic treatmente. Ann Pharmacother 2005, 1942

  96. Frampton A, Spinks J. Hyperthermia associated with central anticholinergic syndrome caused by a transdermal hyoscine patch in a child with cerebral palsy. Emerg Med J 2005; 22: 678–9

    Article  PubMed  CAS  Google Scholar 

  97. Coremans P, Lambrecht G, Schepens P, et al. Anticholinergic intoxication with commercially available thorn apple tea. J Toxicol Clin Toxicol 1994; 32: 589–92

    Article  PubMed  CAS  Google Scholar 

  98. DeFrates LJ, Hoehns JD, Sakornbut EL, et al. Antimuscarinic intoxication resulting from the ingestion of moonflower seeds. Ann Pharmacother 2005; 39: 173–6

    Article  PubMed  Google Scholar 

  99. Ardila A, Moreno C. Scopolamine intoxication as a model of transient global amnesia. Brain Cogn 1991; 15: 236–45

    Article  PubMed  CAS  Google Scholar 

  100. Luh JY, Blackwell TA. Craniofacial hyperhidrosis successfully treated with topical glycopyrrolate. South Med J 2002; 95: 756–8

    PubMed  Google Scholar 

  101. Shaw JE, Abbott CA, Tindle K, et al. A randomised controlled trial of topical glycopyrrolate, the first specific treatment for diabetic gustatory sweating. Diabetologia 1997; 40: 299–301

    Article  PubMed  CAS  Google Scholar 

  102. Tupker RA, Harmsze AM, Deneer VH. Oxybutynin therapy for generalized hyperhidrosis. Arch Dermatol 2006; 142: 1065–6

    PubMed  Google Scholar 

  103. Canaday BR, Stanford RH. Propantheline bromide in the management of hyperhidrosis associated with spinal cord injury. Ann Pharmacother 1995; 29: 489–92

    PubMed  CAS  Google Scholar 

  104. Abbas SQ. Use of thioridazine in palliative care patients with troublesome sweating. J Pain Symptom Manage 2004; 27: 194–5

    Article  PubMed  Google Scholar 

  105. Staas Jr WE, Nemunaitis G. Management of reflex sweating in spinal cord injured patients. Arch Phys Med Rehabil 1989; 70: 544–6

    PubMed  Google Scholar 

  106. Porzio G, Aielli F, Verna L, et al. Gabapentin in the treatment of severe sweating experienced by advanced cancer patients. Supportive Care Cancer 2006; 14: 389–91

    Article  Google Scholar 

  107. Shah S. Resolution of sweating after switching from transdermal fentanyl to oral morphine sulphate [letter]. Palliat Med 2006; 20: 222

    Article  PubMed  CAS  Google Scholar 

  108. Mercadante S. Hyoscine in opioid-induced sweating. J Pain Symptom Manage 1998; 15: 214–5

    Article  PubMed  CAS  Google Scholar 

  109. Caflisch C, Figner B, Eich D. Biperiden for excessive sweating from methadone. Am J Psychiatry 2003; 160: 386–7

    Article  PubMed  Google Scholar 

  110. List CF, Peet MM. Sweat secretion in man: I. Sweating responses in normal persons. Arch Neurol Psychol 39 (1938): 1228–1337

    Google Scholar 

  111. Low VA, Sandroni P, Fealey RD, et al. Detection of small fiber neuropathy by sudomotor testing. Muscle Nerve 2006; 34: 57–61

    Article  PubMed  Google Scholar 

  112. Low PA. Laboratory evaluation of autonomic function. In: Low PA, editor. Clinical autonomic disorders. 2nd ed. Philadelphia (PA): Lippincott-Raven, 1997: 179–208

    Google Scholar 

  113. Fealey RD. Thermoregulatory sweat test. In: Low PA, editor. Clinical autonomic disorders. 2nd ed. Philadelphia (PA): Lippincott-Raven, 1997: 245–57

    Google Scholar 

  114. Low PA, Caskey PE, Tuck RR, et al. Quantitative sudomotor axon reflex test in normal and neuropathic subject. Ann Neurol 1983; 14: 573–80

    Article  PubMed  CAS  Google Scholar 

  115. Dyck PJ, Dyck PJ, Grant IA, et al. Ten steps in characterizing and diagnosing patients with peripheral neuropathy. Neurology 1996; 47: 10–7

    Article  PubMed  CAS  Google Scholar 

  116. Mago R, Monti D. Antiadrenergic treatment of antidepressant-induced excessive sweating in 3 patients. J Clin Psychiatry 2007; 68: 639–40

    Article  PubMed  Google Scholar 

  117. Buecking A, Vandeleur CL, Khazaal Y, et al. Mirtazapine in drug-induced excessive sweating. Eur J Clin Pharmacol 2005; 61: 543–4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review article. The authors have no conflicts of interest that are directly relevant to the content of this review article.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheshire, W.P., Fealey, R.D. Drug-Induced Hyperhidrosis and Hypohidrosis. Drug-Safety 31, 109–126 (2008). https://doi.org/10.2165/00002018-200831020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200831020-00002

Keywords

Navigation