Skip to main content
Log in

Comparative Tolerability of the Newer Fluoroquinolone Antibacterials

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The most common adverse effects of the fluoroquinolones involve the gastrointestinal tract, skin and CNS, and are mainly mild and reversible. Of the gastrointestinal events, nausea and vomiting are the most common.

Mild hepatic reactions are a class effect, usually presenting as mild transaminase level increases without clinical symptoms. However, postmarketing surveillance has revealed significant hepatotoxicity with trovafloxacin. It is not currently known whether the severe reactions to trovafloxacin are specific to that agent or simply represent an extreme of an emerging class effect. The enormous worldwide usage of, and extensive published adverse effect data on the other fluoroquinolones and naphthyridones suggests the former. In perspective, rare but serious hepatotoxicity has been reported with other fluoroquinolones and the overall incidence of trovafloxacin hepatotoxicity is not dissimilar to that reported with flucloxacillin and amoxicillin-clavulanic acid.

CNS reactions vary in severity and include dizziness, convulsions (notably with lomefloxacin) and psychoses. Fluoroquinolones differ in their pro-convulsive activity, relating to their differing potential as γ-aminobutyric acid antagonists and binding to the N-methyl-D-aspartate receptor. The basis for the increased seizure potential following the coadministration of nonsteroidal anti-inflammatory drugs with certain fluoroquinolones is not fully understood.

Fluoroquinolone phototoxicity, caused by the generation of toxic free oxygen species under exposure to UVA radiation, is significantly more common with 8-halogenated compounds. Certain patient groups, e.g. patients with cystic fibrosis, are predisposed to this adverse effect. Murine photocarcinogenicity has been demonstrated with lomefloxacin, but no such effects have been reported in humans.

Prolongation of the QTc interval is also a class effect, although cardiac arrhythmias have only been linked with sparfloxacin. Among the newer fluoroquinolones, clinically significant cardiac events are rare or absent but possible interactions in patients receiving other drugs capable of causing QT prolongation should be anticipated.

Tendinitis and rupture, usually of the Achilles tendon, are rare, class-effects of fluoroquinolones, most frequently reported with pefloxacin. Predisposing factors include aging, corticosteroid use, renal disease, haemodialysis and transplantation.

Use of fluoroquinolones in paediatric patients remains contentious. However, accruing human data suggest that restrictions on paediatric use imposed because of fluoroquinolone-induced cartilage damage in juvenile animals, may soon be relaxed. Data from over 1700 children in the UK failed to disclose arthropathy and extensive paediatric use of norfloxacin in Japan and ciprofloxacin in developing countries has been free of articular effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball P, Tillotson GS. Tolerability of fluoroquinolone antibiotics: past, present and future. Drug Saf 1995; 13: 343–58

    Article  CAS  PubMed  Google Scholar 

  2. Blum MD, Graham DJ, McCloskey CA. Temafloxacin syndrome: review of 95 cases. Clin Infect Dis 1994; 18: 946–50

    Article  CAS  PubMed  Google Scholar 

  3. Ball P. The quinolones: history and overview. In: Andriole VT, editor. The quinolones. 2nd ed. San Diego, London, Boston, New York, Sydney, Tokyo, Melbourne: Academic Press, 1998: 1–28

    Google Scholar 

  4. Burkhardt JE, Walterspiel JN, Schaad UB. Quinolone arthropathy in animals and children. Clin Infect Dis 1997; 25: 1196–204

    Article  CAS  PubMed  Google Scholar 

  5. Schaad UB. Use of the quinolones in pediatrics. In: Andriole, VT, editor. The quinolones. 2nd ed. San Diego, London, Boston, New York, Sydney, Tokyo, Melbourne: Academic Press, 1998: 351–67

    Google Scholar 

  6. Ball P, Fernald A, Tillotson G. Therapeutic advances of new fluoroquinolones. Exp Opin Invest Drugs 1998; 7: 761–83

    Article  CAS  Google Scholar 

  7. Data on file. US Food and Drug Administration, Adverse Event Reporting System: data for the periods Nov 1997 to May 1999

  8. Data on file. US Food and Drug administration. Adverse Event Reporting System: data for the period Jan 1997 to May 1999

  9. Stahlmann R. Safety profile of the quinolones. J Antimicrob Chemother 1990; 26 Suppl. D: 31–44

    Article  CAS  PubMed  Google Scholar 

  10. Suto MJ, Domagala JM, Roland GE, et al. Fluoroquinolones: relationships between structural variations, mammalian cell cytotoxicity, and antimicrobial activity. J Med Chem 1992; 35(25): 4745–50

    Article  CAS  PubMed  Google Scholar 

  11. Rubinstein E, Potgeiter P, Davey P, et al. The use of fluoroquinolones in neutropenic patients — analysis of adverse effects. J Antimicrob Chemother 1994; 34: 7–19

    Article  CAS  PubMed  Google Scholar 

  12. Hayem G, Carbon C. A reappraisal of quinolone tolerability: the experience of their musculoskeletal adverse effects. Drug Saf 1995; 13: 338–42

    Article  CAS  PubMed  Google Scholar 

  13. Lietman PS. Fluoroquinolone toxicities: an update. Drugs 1995; 49 Suppl. 2: 159–63

    Article  CAS  PubMed  Google Scholar 

  14. Stahlmann R, Lode H. Safety overview: toxicity, adverse effects and drug interactions. In: Andriole VR, editor. The quinolones. 2nd ed. San Diego, London, Boston, New York, Sydney, Tokyo, Melbourne: Academic Press, 1998; 369–415

    Google Scholar 

  15. Lipsky BA, Baker CA. Fluoroquinolone toxicity profiles: a review focusing on newer agents. Clin Infect Dis 1999; 28: 352–64

    Article  CAS  PubMed  Google Scholar 

  16. Domagala JM. Structure-activity and structure-side-effect relationships for the fluoroquinolone antibacterials. J Antimicrob Chemother 1994; 33: 685–706

    Article  CAS  PubMed  Google Scholar 

  17. Davis R, Bryson HM. Levofloxacin: a review of its antibacterial activity, pharmacokinetics and therapeutic efficacy. Drugs 1994; 47: 677–700

    Article  CAS  PubMed  Google Scholar 

  18. Wang CX, Sabbaj J, Corrado M, et al. World-wide experience with norfloxacin: efficacy and safety. Scand J Infect Dis 1986; 28 Suppl.: 81–9

    Google Scholar 

  19. Gonzalez JP, Henwood JM. Pefloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 1989; 37: 628–68

    Article  CAS  PubMed  Google Scholar 

  20. Jungst G, Mohr R. Overview of post-marketing experience with ofloxacin in Germany. J Antimicrob Chemother 1988; 22 Suppl. C: 167–75

    PubMed  Google Scholar 

  21. Rizk E. The US clinical experience with lomefloxacin, a new once daily fluoroquinolone. Am J Med 1992; Suppl. 4A: 130S–5S

    Article  Google Scholar 

  22. Geddes AM. Safety of fleroxacin in clinical trials. Am J Med 1993; 94 Suppl. 3A: S201–3

    Google Scholar 

  23. Carbon C, Rubinstein E. Sparfloxacin monograph. Chester: Adis International Ltd, 1994

    Google Scholar 

  24. Rubinstein E. Safety profile of sparfloxacin in the treatment of respiratory tract infections. J Antimicrob Chemother 1996; 37 Suppl. A: 145–60

    Article  CAS  PubMed  Google Scholar 

  25. Stahlmann R, Schwabe R. Safety profile of grepafloxacin compared with other fluoroquinolones. J Antimicrob Chemother 1997; 40 Suppl. A: 83–92

    Article  CAS  PubMed  Google Scholar 

  26. Williams D, Hopkins S. Safety of trovafloxacin in treatment of lower respiratory tract infections. Eur J Clin Microbiol Infect Dis 1998; 17: 454–8

    CAS  PubMed  Google Scholar 

  27. Springsklee M, Reiter C, Mayer JM. Safety and tolerability profile of moxifloxacin (MXF) [abstract P0208]. Clin Microbiol Infect 1999; 5 Suppl. 3: 140

    Google Scholar 

  28. Data on file. Sitafloxacin. Daiichi Pharm Co Ltd, Japan, 1999

  29. Wilton LV, Pearce GL, Mann RD. A comparison of ciprofloxacin, norfloxacin, ofloxacin, azithromycin and cefixime examined by observational cohort studies. Br J Clin Pharmacol 1996; 41: 277–84

    Article  CAS  PubMed  Google Scholar 

  30. Ball P. Long term use of quinolones and their safety. Rev Infect Dis 1989; 11 Suppl. 5: S1365–70

    Article  PubMed  Google Scholar 

  31. Segev S, Yaniv I, Haverstock D, et al. Safety of long term therapy with ciprofloxacin: data analysis of controlled clinical trials and review. Clin Infect Dis 1999; 28: 299–308

    Article  CAS  PubMed  Google Scholar 

  32. Levaquin package insert (US FDA approved), Raritan (NJ): Ortho Pharmaceutical Corporation, Dec 1996

  33. Anon. Trovafloxacin: a once daily, broad spectrum fluoroquinolone antibiotic. Formulary 1998; 33 Suppl. 3: S2–S12

  34. Hwang CC. Safety and efficacy of trovafloxacin in community acquired pneumonia: a meta-analysis of patients age 65 years and older [abstract P275]. J Antimicrob Chemother 1999; 44 Suppl. A: 100

    Google Scholar 

  35. Loffeld RJLF, Flendrig JA. Pseudomembranous colitis under administration of norfloxacin. Ned Tijdschr Geneeskd 1990; 134: 83

    CAS  PubMed  Google Scholar 

  36. Golledge CL, Carson CF, O’Neill GL, et al. Ciprofloxacin and Clostridium difficile associated diarrhoea. J Antimicrob Chemother 1992; 30: 141–7

    Article  CAS  PubMed  Google Scholar 

  37. Topkis S, Swarz H, Breisch SA, et al. Efficacy and safety of grepafloxacin 600 mg daily for 10 days in patients with community acquired pneumonia. Clin Ther 1997; 19: 975–88

    Article  CAS  PubMed  Google Scholar 

  38. Langan C, Cradnfield R, Breisch S, et al. Randomised, double blind study of grepafloxacin versus amoxicillin in patients with acute bacterial exacerbations of chronic bronchitis. J Antimicrob Chemother 1997; 40 Suppl. A: 63–72

    Article  CAS  PubMed  Google Scholar 

  39. O’Doherty B, Dutchman DA, Pettit R, et al. Randomised, double blind comparative study of grepafloxacin and amoxycillin in the treatment of patients with community acquired pneumonia. J Antimicrob Chemother 1997; 40 Suppl. A: 73–81

    Article  PubMed  Google Scholar 

  40. Data on file in 4296 patients, Bayer AG, Leverkusen, Germany, 1999

  41. Blum A. Ofloxacin induced severe hepatitis [letter]. South Med J 1991; 84(9): 1158

    Article  CAS  PubMed  Google Scholar 

  42. Fuchs S, Simon Z, Brezis M. Fatal hepatic failure associated with ciprofloxacin [letter]. Lancet 1994; 343: 738–9

    Article  CAS  PubMed  Google Scholar 

  43. Labowitz JK, Silverman WB. Cholestatic jaundice induced by ciprofloxacin. Dig Dis Sci 1997; 42(1): 192–4

    Article  CAS  PubMed  Google Scholar 

  44. Lucena MI, Andrade RJ, Sanchez-Martinez H, et al. Norfloxacin-induced cholestatic jaundice. Am J Gastroenterol 1998; 93: 2309–11

    Article  CAS  PubMed  Google Scholar 

  45. Committee for Proprietory Medicinal Products, document 13, Mar, 1998

  46. Lipsky BA, Dorr MB, Magner DJ, et al. Safety profile of sparfloxacin, a new fluoroquinolone antibiotic. Clin Ther 1999; 21: 148–59

    Article  CAS  PubMed  Google Scholar 

  47. Wagstaff AJ, Balfour JA. Grepafloxacin. Drugs 1997; 53: 817–24

    Article  CAS  PubMed  Google Scholar 

  48. Trovan package insert (US FDA approved), Pfizer Inc., New York, Jan 1998

  49. FDA Talk paper: FDA issues public health advisory on liver toxicity associated with the antibiotic Trovan. Rockville (MD): US Department of Health and Human Service, Food and Drug Administration, 6 Jun 1999

  50. Press release, 15770/99, London: European Agency for the Evaluation of Medicinal Products, 20 May, 1999

  51. Lopez Navidad A, Domingo P, Cadafalch J, et al. Norfloxacin-induced hepatotoxicity. J Hepatol 1990; 11: 277–8

    Article  CAS  PubMed  Google Scholar 

  52. Hautekeete M, Kockx MM, Naegels S, et al. Cholestatic hepatitis related to quinolones. J Hepatol 1995; 23: 759–63

    Article  CAS  PubMed  Google Scholar 

  53. European Agency for the Evaluation of Medicinal Products. Public statement on Trovan/Trovan IV/Turvel IV (Trovafloxacin/Alatrofloxacin). Recommendation to suspend the marketing authorisation in the European Union. London: Human Medicines Evaluation Unit, 15 Jun 1999

    Google Scholar 

  54. Olsson R, Wiholm BE, Sand C, et al. Liver damage from flucloxacillin, cloxacillin and dicloxacillin. J Hepatol 1992; 15: 154–61

    Article  CAS  PubMed  Google Scholar 

  55. Garcia-Rodriguez L, Stricker BH, Zimmerman HJ. Risk of acute liver injury associated with the combination of amoxicillin and clavulanic acid. Arch Intern Med 1996; 156: 1327–32

    Article  CAS  PubMed  Google Scholar 

  56. Inman W, Kubota K, Pearce G, et al. PEM report number 4: ciprofloxacin. Pharmacoepidemiol Drug Saf 1993; 2: 341–4

    Article  Google Scholar 

  57. Jick SS, Jick H, Dean AD. A follow-up safety study of ciprofloxacin users. Pharmacotherapy 1993; 13: 461–4

    CAS  PubMed  Google Scholar 

  58. Aggarwal A, Gurka J. Probable ciprofloxacin induced cholestasis. Aust N Z J Med 1995; 25: 541–2

    Article  CAS  PubMed  Google Scholar 

  59. Nozaki M. Safety and side effects of ofloxacin: central nervous system effects. Penetration 1996: 32–5

  60. Hori S, Shimada J, Saito A, et al. Comparison of the inhibitory effects of new quinolones on gamma-aminobutyric acid receptor binding in the presence of anti-inflammatory drugs. Rev Infect Dis 1989; 11 Suppl. 5: S1397–8

    Google Scholar 

  61. Halliwell RF, Davey PG, Lambert JJ. Antagonism of GABA receptors by 4-quinolones. J Antimicrob Chemother 1993; 31: 457–62

    Article  CAS  PubMed  Google Scholar 

  62. Davey PG, Charter M, Kelly S, et al. Ciprofloxacin and sparfloxacin penetration into human brain tissue and their activity as antagonists of GABAa receptor of rat vagus nerve. Antimicrob Agents Chemother 1994; 38: 1356–62

    Article  CAS  PubMed  Google Scholar 

  63. Akahane K, Kimura Y, Tsutomi Y, et al. Possible intermolecular interaction between quinolones and biphenylacetic acid inhibits gamma-aminobutyric acid receptor sites. Antimicrob Agents Chemother 1994; 38: 2323–9

    Article  CAS  PubMed  Google Scholar 

  64. Schmuck G, Schurmann A, Schluter G. Determination of the excitatory potencies of fluoroquinolones in the central nervous system by an in vitro model. Antimicrob Agents Chemother 1998; 42: 1831–6

    CAS  PubMed  Google Scholar 

  65. Williams PD, Helton DR. The proconvulsive activity of quinolone antibiotics in an animal model. Toxicol Lett 1991; 58: 23–8

    Article  CAS  PubMed  Google Scholar 

  66. Tokura Y. Quinolone photoallergy: photosensitivity dermatitis induced by systemic administration of photohaptenic drugs. J Dermatol Sci 1998; 18: 1–10

    Article  CAS  PubMed  Google Scholar 

  67. Ferguson J. Fluoroquinolone photosensitisation: a review of clinical and laboratory studies. Photochem Photobiol 1995; 62: 954–8

    Article  CAS  Google Scholar 

  68. Wagai N, Tawara K. Important role of oxygen metabolites in quinolone antibacterial agent-induced cutaneous phototoxicity in mice. Arch Toxicol 1991; 65: 495–9

    Article  CAS  PubMed  Google Scholar 

  69. Wagai N, Tawara K. Possible direct role of reactive oxygens in the cause of cutaneous phototoxicity induced by five quinolones in mice. Arch Toxicol 1992; 66: 392–7

    Article  CAS  PubMed  Google Scholar 

  70. Wagai N, Tawara K. Possible reasons for differences in phototoxic potential of 5 quinolone antibacterial agents: generation of toxic oxygen. Free Radic Res Commun 1992; 17: 387–98

    Article  CAS  PubMed  Google Scholar 

  71. Bowie WR, Willetts V, Jewesson PJ. Adverse reactions in a dose ranging study with a new long-acting fluoroquinolone, fleroxacin. Antimicrob Agents Chemother 1989; 33: 1778–82

    Article  CAS  PubMed  Google Scholar 

  72. Marutani K, Matsumoto M, Otabe Y, et al. Reduced phototoxicity of a fluoroquinolone antibacterial agent with a methoxy group at the 8 position in mice irradiated with long-wavelength UV light. Antimicrob Agents Chemother 1993; 37: 2217–23

    Article  CAS  PubMed  Google Scholar 

  73. Rosen JE, Chen D, Prahalad AK, et al. A fluoroquinolone antibiotic with a methoxy group at the 8 position yields reduced generation of 8-oxo-7,8-dihydro-2’-deoxyguanosine after ultraviolet-A irradiation. Toxicol Appl Pharmacol 1997; 145: 381–7

    Article  CAS  PubMed  Google Scholar 

  74. Wagai N, Yamaguchi F, Sekiguchi M, et al. Phototoxic potential of quinolone antibacterial agents in Balb/c mice. Toxicol Lett 1990; 54: 299–308

    Article  CAS  PubMed  Google Scholar 

  75. Mayne JT, Johnson NJ, Kluwe WM, et al. A study of the phototoxic potential of trovafloxacin in BALB/c mice. J Antimicrob Chemother 1997; 39 Suppl. B: 67–73

    Article  CAS  PubMed  Google Scholar 

  76. Owen K. Comparative grepafloxacin phototoxicity in mouse skin. J Antimicrob Chemother 1998; 42: 261–4

    Article  CAS  PubMed  Google Scholar 

  77. Ferguson J, Johnson BE. Clinical and laboratory studies of the photosensitising potential of norfloxacin, a 4-quinolone broad spectrum antibiotic. Br J Dermatol 1993; 128: 285–95

    Article  CAS  PubMed  Google Scholar 

  78. Ferguson J, Dawe R. Phototoxicity in quinolones: comparison of ciprofloxacin and grepafloxacin. J Antimicrob Chemother 1997; 40 Suppl. A: 93–8

    Article  CAS  PubMed  Google Scholar 

  79. Ferguson J, Patterson BE, Purkins L, et al. An open, observerblinded, placebo-controlled, randomised, parallel-group study to investigate the phototoxic potential of trovafloxacin, ciprofloxacin and lomefloxacin [abstract A15]. Program and Abstracts 36th ICAAC; 1996 Sep 15–18; New Orleans (LA)

    Google Scholar 

  80. Ferguson J, McEwen J, Gohler K, et al. A double-blind, placebo-and positive-controlled, randomised study to investigate the phototoxic potential of gatifloxacin, a new fluoroquinolone antibiotic [abstract]. 6th International Symposium on New Quinolones: 1998 Nov 15–17; Denver (CO): 24

    Google Scholar 

  81. Ferguson J, Richards J, Vousden M, et al. The low phototoxic potential of gemifloxacin in healthy volunteers. 9th European Congress of Clinical Microbiology and Infectious Diseases; 1999 Mar 21–24: Berlin

    Google Scholar 

  82. Man I, Murphy J, Ferguson J. Fluoroquinolone phototoxicity: a comparison of moxifloxacin and lomefloxacin in normal volunteers. J Antimicrob Chemother 1999; 43 Suppl. B: 77–82

    Article  CAS  PubMed  Google Scholar 

  83. Data on file, Pfizer, Bayer, 1998 to 1999

  84. Tack KJ, Eisemann I, Zervos M. Clinafloxacin for the treatment of serious infections caused by multiply-resistant pathogens [poster]. 6th International Symposium on New Quinolones: 1998 Nov 15–17: Denver (CO)

    Google Scholar 

  85. Solomkin JS, Wilson SE, Bennion RS, et al. Results of a prospective blinded RCT comparing clinafloxacin (CLX) to im-ipenem/cilastatin for complicated intra-abdominal infections [abstract MN-55]. Program and abstracts of the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 24–27; San Diego (CA): 604

    Google Scholar 

  86. Burdge DR, Nakielna EM, Rabin HR. Photosensitivity associated with ciprofloxacin use in adult patients with cystic fibrosis [letter]. Antimicrob Agents Chemother 1995; 39: 793

    Article  CAS  PubMed  Google Scholar 

  87. Klecak G, Urbach F, Urwyler H. Fluoroquinolone antibacterials enhance UVA-induced skin tumours. J Photochem Photobiol B 1997; 37: 174–81

    Article  CAS  PubMed  Google Scholar 

  88. Makinen M, Forbes PD, Stenback F. Quinolone antibacterials: a new class of photochemical carcinogens. J Photochem Photobiol B 1997; 37: 182–7

    Article  CAS  PubMed  Google Scholar 

  89. Jaillon P, Morganroth J, Brumpt I, et al. Overview of electrocardiographic and cardiovascular safety data for sparfloxacin. J Antimicrob Chemother 1996; 37 Suppl. A: 161–7

    Article  CAS  PubMed  Google Scholar 

  90. Anon. Grepafloxacin clinical investigators brochure. Greenford, UK: GlaxoWellcome research and development, 1996

  91. Drici M-D, Knollmann BC, Wang W-X, et al. Cardiac actions of erythromycin: influence of female sex. JAMA 1998; 280: 1774–6

    Article  CAS  PubMed  Google Scholar 

  92. Royer RJ, Pierfitte C, Netter P. Features of tendon disorders with fluoroquinolones. Therapie 1994; 49: 75–6

    CAS  PubMed  Google Scholar 

  93. Huston KA. Achilles tendinitis and tendon rupture due to fluoroquinolone antibiotics. N Engl J Med 1994; 331: 748

    Article  CAS  PubMed  Google Scholar 

  94. Kahn MF, Hayem G. Tendons and fluoroquinolones: unresolved issues. Rev Rhum 1997; 64: 437–9

    CAS  Google Scholar 

  95. Pierfitte C, Royer RJ. Tendon disorders with fluoroquinolones. Therapie 1996; 51: 419–20

    CAS  PubMed  Google Scholar 

  96. Decocq G, Moriniere P, Dufour I, et al. Is hemodialysis a risk factor for tendinopathies due to fluoroquinolones? Therapie 1997; 52: 613–4

    Google Scholar 

  97. Marti HP, Stoller R, Frey FJ. Fluoroquinolones as a cause of tendon disorders in patients with renal failure/renal transplants. Br J Rheumatol 1998; 37: 343–4

    Article  CAS  PubMed  Google Scholar 

  98. Koeger AC, Bellaiche L, Roger B. Magnetic resonance imaging in fluoroquinolone induced tendinopathy. J Rheumatol 1997; 24: 1015–7

    CAS  PubMed  Google Scholar 

  99. Carrasco JM, Garcia B, Andujar C, et al. Tendinitis associated with ciprofloxacin [letter]. Ann Pharmacother 1997; 31: 120

    CAS  PubMed  Google Scholar 

  100. Poon CC, Sundaram NA. Spontaneous bilateral Achilles tendon rupture associated with ciprofloxacin [letter]. Med J Aust 1997; 166: 665

    CAS  PubMed  Google Scholar 

  101. West MB, Gow P. Ciprofloxacin, bilateral Achilles tendonitis and unilateral tendon rupture - a case report. N Z Med J 1998; 111: 18–9

    CAS  PubMed  Google Scholar 

  102. Kahn MF. Achilles tendinitis and ruptures [letter]. Br J Sports Med 1998; 32: 266

    CAS  PubMed  Google Scholar 

  103. Green SD. Ten years of pediatric experience with ciprofloxacin. Infect Dis Clin Pract 1998; 7 Suppl. 3: S175–183

    Article  Google Scholar 

  104. Maggiolo F, Caprioli S, Suter F. Risk/benefit analysis of quinolone use in children: the effect on diarthrodial joints. J Antimicrob Chemother 1990; 26: 469–71

    Article  CAS  PubMed  Google Scholar 

  105. Jick S. Ciprofloxacin safety in a paediatric population. Paediatr Infect Dis J 1997; 16: 130–4

    Article  CAS  Google Scholar 

  106. Hampel B, Hullmann R, Schmidt H. Ciprofloxacin in pediatrics: worldwide clinical experience based on compassionate use - safety report. Pediatr Infect Dis J 1997; 16: 127–9

    Article  CAS  PubMed  Google Scholar 

  107. Schaad UB, Stoupis C, Wedgwood J, et al. Clinical, radiologic and magnetic resonance monitoring for skeletal toxicity in paediatric patients receiving a three month course of ciprofloxacin. Pediatr Infect Dis J 1991; 10: 723–9

    CAS  PubMed  Google Scholar 

  108. Danisicova A, Krcmeryova T, Belan S, et al. Magnetic resonance imaging in diagnosis of potential arthropathogenicity in children receiving quinolones: no evidence of quinolone-induced arthropathy. Drugs 1995; 49 Suppl. 2: 492–4

    Article  Google Scholar 

  109. Fujii R. The use of norfloxacin in children in Japan. In: Adam D, Rubio TT, editors. The use of new quinolones in pediatric medicine. Munich: Futuramed Publications, 1992; 219–30

    Google Scholar 

  110. Green S, Tillotson G. Use of ciprofloxacin in developing countries. Pediatr Infect Dis J 1997; 16: 150–9

    Article  CAS  PubMed  Google Scholar 

  111. Schaad UB, Salam MA, Aujard Y, et al. Use of fluoroquinolones in paediatrics: consensus report of an International Society of Chemotherapy commission. Pediatr Infect Dis J 1995; 14: 1–9

    Article  CAS  PubMed  Google Scholar 

  112. Data on file, Pfizer, New York, 1999

  113. Atasoy H. Hypertension associated with ciprofloxacin use in an infant. Ann Pharmacother 1995; 29: 1049

    CAS  PubMed  Google Scholar 

  114. Singh J, Agarwal AK, Sudrania SP. Extrapyramidal syndrome following ciprofloxacin treatment [letter]. Indian Pediatr 1994; 31: 608–9

    CAS  PubMed  Google Scholar 

  115. Winrow AP, Supramanian G. Benign intracranial hypertension after ciprofloxacin administration. Arch Dis Child 1990; 65: 1165–6

    Article  CAS  PubMed  Google Scholar 

  116. Niki Y, Watanabe S, Tamada S, et al. Effect of HSR-903, a new fluoroquinolone, on the concentration of theophylline in serum. Antimicrob Agents Chemother 1999; 43(6): 1494–6

    CAS  PubMed  Google Scholar 

  117. Niki Y, Hashiguchi K, Kimura M, et al. Quinolone antimicrobial agents and theophylline. Chemotherapy (Tokyo) 1992; 40: 592–601

    Google Scholar 

  118. Niki Y, Hashiguchi K, Okimoto K, et al. Quinolone antimicrobial agents and theophylline [letter]. Chest 1992; 101: 881

    Article  CAS  PubMed  Google Scholar 

  119. Efthymiopoulos C, Bramer SL, Maroli A, et al. Theophylline and warfarin interaction studies with grepafloxacin. Clin Pharmacokinet 1997; 33 Suppl. 1: 39–46

    Article  CAS  PubMed  Google Scholar 

  120. Vincent J, Teng R, Dogolo LC, et al. Effect of trovafloxacin, a new fluoroquinolone antibiotic, on the steady state pharmacokinetics of theophylline in volunteers. J Antimicrob Chemother 1997; 39 Suppl. B: 81–6

    Article  CAS  PubMed  Google Scholar 

  121. Stass H, Kubitza D. Interaction profile of moxifloxacin. Drugs 1999; 58 Suppl. 2: 265–6

    Google Scholar 

  122. Davy M, Allen A, Bird N, et al. Lack of effect of gemifloxacin on the steady state pharmacokinetics of theophylline in healthy volunteers [abstract P419]. J Antimicrob Chemother 1999; 44 Suppl. A: 133

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ball, P., Mandell, L., Niki, Y. et al. Comparative Tolerability of the Newer Fluoroquinolone Antibacterials. Drug-Safety 21, 407–421 (1999). https://doi.org/10.2165/00002018-199921050-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199921050-00005

Keywords

Navigation