Skip to main content

Advertisement

Log in

Octreoscan Versus FDG-PET for Neuroendocrine Tumor Staging: A Biological Approach

  • Endocrine Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Clinicians may order Octreoscan or positron emission tomography (PET) scan for staging patients with neuroendocrine tumors (NETs). 111In-Octreoscan (Octreoscan) identifies tumors by radiolabeled targeting of somatostatin receptors, while 18F-fluorodeoxyglucose-positron emission tomography (18FDG-PET) measures differential tissue glucose transport. We assessed the sensitivity of both nuclear imaging modalities with pathologic correlation to define the best initial choice for NET staging after standard cross-sectional imaging.

Methods

We identified all patients diagnosed with NETs of gastrointestinal or pancreatic origin who underwent nuclear imaging staging by Octreoscan and/or PET from 2000 to 2013. Imaging results were correlated with tumor differentiation and grade of pathology specimens.

Results

Imaging and pathology results were identified for 153 patients. Of these, 131 underwent Octreoscan, 43 underwent PET, and 21 patients had both performed. Overall sensitivity of Octreoscan and PET for NET detection was similar (77 vs. 72 %; p = not significant). For well-differentiated NETs, Octreoscan (n = 124) demonstrated sensitivity of 80 vs. 60 % (p = 0.28) for PET (n = 30). For poorly-differentiated NETs, Octreoscan (n = 7) proved significantly less sensitive than PET (n = 13) (57 vs. 100 %; p = 0.02). The sensitivity of Octreoscan versus PET varied similarly when analyzed by WHO tumor grade: Grade 1 (79 vs. 52 %; p = 0.16), Grade 2 (85 vs. 86 %; p = not significant), and Grade 3 (57 vs. 100 %; p = 0.02).

Conclusions

Tumor differentiation can be used to guide selection of nuclear imaging modalities for staging gastrointestinal and pancreatic NETs. Octreoscan appears more sensitive than 18FDG-PET for well-differentiated NETs, whereas 18FDG-PET demonstrates superior sensitivity for poorly-differentiated NETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arnold R. Endocrine tumours of the gastrointestinal tract. Introduction: definition, historical aspects, classification, staging, prognosis and therapeutic options. Best Pract Res Clin Gastroenterol. 2005;19(4):491–505.

    Article  CAS  PubMed  Google Scholar 

  2. Modlin IM, Oberg K, Chung DC, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9(1):61–72.

    Article  CAS  PubMed  Google Scholar 

  3. Klimstra DS, Modlin IR, Coppola D, Lloyd RV, Suster S. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas. 2010;39(6):707–712.

    Article  PubMed  Google Scholar 

  4. Turaga KK, Kvols LK. Recent progress in the understanding, diagnosis, and treatment of gastroenteropancreatic neuroendocrine tumors. CA Cancer J Clin. 2011;61(2):113–132.

    Article  PubMed  Google Scholar 

  5. Reubi JC, Waser B, Schaer JC, Laissue JA. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med. 2001;28(7):836–846.

    Article  CAS  PubMed  Google Scholar 

  6. Papotti M, Bongiovanni M, Volante M, et al. Expression of somatostatin receptor types 1-5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis. Virchows Arch. 2002;440(5):461–475.

    Article  CAS  PubMed  Google Scholar 

  7. Oberg K, Eriksson B. Nuclear medicine in the detection, staging and treatment of gastrointestinal carcinoid tumours. Best Pract Res Clin Endocrinol Metab. 2005;19(2):265–276.

    Article  PubMed  Google Scholar 

  8. Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med. 2006;36(3):228–247.

    Article  PubMed  Google Scholar 

  9. Kwekkeboom DJ, Krenning EP, Lebtahi R, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: peptide receptor radionuclide therapy with radiolabeled somatostatin analogs. Neuroendocrinology. 2009;90(2):220–226.

    Article  CAS  PubMed  Google Scholar 

  10. Krenning EP, Kwekkeboom DJ, Bakker WH, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993;20(8):716–731.

    Article  CAS  PubMed  Google Scholar 

  11. Rust E, Hubele F, Marzano E, et al. Nuclear medicine imaging of gastro-entero-pancreatic neuroendocrine tumors. The key role of cellular differentiation and tumor grade: from theory to clinical practice. Cancer Imaging. 2012;12:173–184.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Adams S, Baum RP, Hertel A, Schumm-Drager PM, Usadel KH, Hor G. Metabolic (PET) and receptor (SPET) imaging of well- and less well-differentiated tumours: comparison with the expression of the Ki-67 antigen. Nucl Med Commun. 1998;19(7):641–647.

    Article  CAS  PubMed  Google Scholar 

  13. Eriksson B, Bergstrom M, Sundin A, et al. The role of PET in localization of neuroendocrine and adrenocortical tumors. Ann N Y Acad Sci. 2002;970:159–169.

    Article  CAS  PubMed  Google Scholar 

  14. Oberg K, Castellano D. Current knowledge on diagnosis and staging of neuroendocrine tumors. Cancer Metastasis Rev. 2011;30 Suppl 1:3–7.

    Article  PubMed  Google Scholar 

  15. Bosman F, Carneiro F, Hruban R, Theise N, eds. WHO classification of tumours of the digestive system. 4th ed. Lyon: IARC Press; 2010.

    Google Scholar 

  16. Ezziddin S, Logvinski T, Yong-Hing C, et al. Factors predicting tracer uptake in somatostatin receptor and MIBG scintigraphy of metastatic gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2006;47(2):223–233.

    CAS  PubMed  Google Scholar 

  17. Reubi JC, Kvols LK, Waser B, et al. Detection of somatostatin receptors in surgical and percutaneous needle biopsy samples of carcinoids and islet cell carcinomas. Cancer Res. 1990;50(18):5969–5977.

    CAS  PubMed  Google Scholar 

  18. de Herder WW, Hofland LJ, van der Lely AJ, Lamberts SW. Somatostatin receptors in gastroentero-pancreatic neuroendocrine tumours. Endocr Relat Cancer. 2003;10(4):451–458.

    Article  PubMed  Google Scholar 

  19. Adams S, Baum R, Rink T, Schumm-Drager PM, Usadel KH, Hor G. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur J Nucl Med. 1998;25(1):79–83.

    Article  CAS  PubMed  Google Scholar 

  20. Kayani I, Bomanji JB, Groves A, et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1,Tyr3-octreotate) and 18F-FDG. Cancer. 2008;112(11):2447–2455.

    Article  PubMed  Google Scholar 

  21. Pasquali C, Rubello D, Sperti C, et al. Neuroendocrine tumor imaging: can 18F-fluorodeoxyglucose positron emission tomography detect tumors with poor prognosis and aggressive behavior? World J Surg. 1998;22(6):588–592.

    Article  CAS  PubMed  Google Scholar 

  22. Shaverdian N, Pinchot SN, Zarebczan B, Gillis HC, Schiro A, Chen H. Utility of (1)(1)(1)indium-pentetreotide scintigraphy in patients with neuroendocrine tumors. Ann Surg Oncol. 2013;20(2):640–645.

    Article  PubMed  Google Scholar 

  23. Scanga DR, Martin WH, Delbeke D. Value of FDG PET imaging in the management of patients with thyroid, neuroendocrine, and neural crest tumors. Clin Nucl Med. 2004;29(2):86–90.

    Article  PubMed  Google Scholar 

  24. Belhocine T, Foidart J, Rigo P, et al. Fluorodeoxyglucose positron emission tomography and somatostatin receptor scintigraphy for diagnosing and staging carcinoid tumours: correlations with the pathological indexes p53 and Ki-67. Nucl Med Commun. 2002;23(8):727–734.

    Article  CAS  PubMed  Google Scholar 

  25. Binderup T, Knigge U, Loft A, et al. Functional imaging of neuroendocrine tumors: a head-to-head comparison of somatostatin receptor scintigraphy, 123I-MIBG scintigraphy, and 18F-FDG PET. J Nucl Med. 2010;51(5):704–712.

    Article  PubMed  Google Scholar 

  26. Binderup T, Knigge U, Loft A, Federspiel B, Kjaer A. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010;16(3):978–985.

    Article  CAS  PubMed  Google Scholar 

  27. Garin E, Le Jeune F, Devillers A, et al. Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J Nucl Med. 2009;50(6):858–864.

    Article  CAS  PubMed  Google Scholar 

  28. Asnacios A, Courbon F, Rochaix P, et al. Indium-111-pentetreotide scintigraphy and somatostatin receptor subtype 2 expression: new prognostic factors for malignant well-differentiated endocrine tumors. J Clin Oncol. 2008;26(6):963–970.

    Article  PubMed  Google Scholar 

Download references

Disclosures

None.

Financial Support

This study is supported in part by the Katz Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Kooby MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Squires, M.H., Volkan Adsay, N., Schuster, D.M. et al. Octreoscan Versus FDG-PET for Neuroendocrine Tumor Staging: A Biological Approach. Ann Surg Oncol 22, 2295–2301 (2015). https://doi.org/10.1245/s10434-015-4471-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-015-4471-x

Keywords

Navigation