Skip to main content
Log in

Recommendations for the Primary Analysis of Continuous Endpoints in Longitudinal Clinical Trials

  • Statistics
  • Published:
Drug information journal : DIJ / Drug Information Association Aims and scope Submit manuscript

Abstract

This position paper summarizes relevant theory and current practice regarding the analysis of longitudinal clinical trials intended to support regulatory approval of medicinal products, and it reviews published research regarding methods for handling missing data. It is one strand of the PhRMA initiative to improve efficiency of late-stage clinical research and gives recommendations from a cross-industry team. We concentrate specifically on continuous response measures analyzed using a linear model, when the goal is to estimate and test treatment differences at a given time point. Traditionally, the primary analysis of such trials handled missing data by simple imputation using the last, or baseline, observation carried forward method (LOCF, BOCF) followed by analysis of (co)variance at the chosen time point. However, the general statistical and scientific community has moved away from these simple methods in favor of joint analysis of data from all time points based on a multivariate model (eg, of a mixed-effects type). One such newer method, a likelihood-based mixed-effects model repeated measures (MMRM) approach, has received considerable attention in the clinical trials literature. We discuss specific concerns raised by regulatory agencies with regard to MMRM and review published evidence comparing LOCF and MMRM in terms of validity, bias, power, and type I error. Our main conclusion is that the mixed model approach is more efficient and reliable as a method of primary analysis, and should be preferred to the inherently biased and statistically invalid simple imputation approaches. We also summarize other methods of handling missing data that are useful as sensitivity analyses for assessing the potential effect of data missing not at random.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Molenberghs G, Kenward MG. Missing Data in Clinical Studies. Chichester: John Wiley; 2007.

    Book  Google Scholar 

  2. Gadbury GL, Coffey CS, Allison DB. Modern statistical methods for handling missing repeated measurements in obesity trials: beyond LOCF. Obes Rev. 2003;4:175–184.

    Article  CAS  PubMed  Google Scholar 

  3. Lane PW. Handling drop-out in longitudinal clinical trials: a comparison of the LOCF and MMRM approaches. Pharm Stat. (early view) 2007;DOI: 10.1002/pst.267.

  4. Leon AC. Mallinckrodt CH. Chuang-Stein C, Archibald DG, Archer GE, Chartier K. Attrition in randomized controlled clinical trials: methodological issues in psychopharmacology. Biol Psychiatry. 2006;59:1001–1005.

    Article  PubMed  Google Scholar 

  5. Molenberghs G, Thijs H, Jansen I, et al. Analyzing incomplete longitudinal clinical trial data. Bio-statistics. 2004;5:445–464.

    Article  PubMed  Google Scholar 

  6. Liu G, Gould AL. Comparison of alternative strategies for analysis of longitudinal trials with dropouts. J Biopharm Stat. 2002;12:207–226.

    Article  PubMed  Google Scholar 

  7. Mallinckrodt CH, Clark WS, David SR. Accounting for dropout bias using mixed-effects models. J Biopharm Stat. 2001;11(1–2):9–21.

    Article  CAS  PubMed  Google Scholar 

  8. Mallinckrodt CH, Clark WS, David SR. Type I error rates from mixed effects model repeated measures versus fixed effects ANOVA with missing values imputed via last observation carried forward. Drug Inf J. 2001;35:1215–1225.

    Article  Google Scholar 

  9. Mallinckrodt CH, Sanger TM, Dube S, et al. Assessing and interpreting treatment effects in longitudinal clinical trials with missing data. Biol Psychiatry. 2003;53:754–760.

    Article  PubMed  Google Scholar 

  10. Mallinckrodt CH. Clark SW. Carroll RJ, Molenberghs G. Assessing response profiles from incomplete longitudinal clinical trial data under regulatory considerations. J Biopharm Stat. 2003; 13:179–190.

    Article  PubMed  Google Scholar 

  11. Mallinckrodt CH, Kaiser CJ, Watkin JG, Molenberghs G, Carroll RJ. The effect of correlation structure on treatment contrasts estimated from incomplete clinical trial data with likelihood-based repeated measures compared with last observation carried forward ANOVA. Clin Trials. 2004;1:477–489.

    Article  PubMed  Google Scholar 

  12. Mallinckrodt CH, Kaiser CJ, Watkin JG, Detke MJ, Molenberghs G, Carroll RJ. Type I error rates from likelihood-based repeated measures analyses of incomplete longitudinal data. Pharm Stat. 2004;3:171–186.

    Article  Google Scholar 

  13. Mallinckrodt CH, Raskin J, Wohlreich MM, Watkin JG, Detke MJ. The efficacy of duloxetine: a comprehensive summary of results from MMRM and LOCF_ANOVA in eight clinical trials. BMC Psychiatry. 2004;4:26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Shen S. Beunckens C, Mallinckrodt C, Molenberghs G. A local influence sensitivity analysis for incomplete longitudinal depression data. J Bio-pharm Stat. 2006:16:365–384.

    Article  PubMed  Google Scholar 

  15. Cnaan A, Laird NM, Slasor P. Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Stat Med. 1997;16:2349–2380.

    Article  CAS  PubMed  Google Scholar 

  16. Little R, Rubin D. Statistical Analysis With Missing Data. New York: John Wiley; 1987.

    Google Scholar 

  17. Verbeke G, Molenberghs G. Linear Mixed Models for Longitudinal Data. New York: Springer: 2000.

    Google Scholar 

  18. Rubin DB. Inference and missing data. Biometrika. 1976;63:581–592.

    Article  Google Scholar 

  19. Little RJA. Modeling the drop-out mechanism in repeated measures studies. J Am Stat Assoc. 1995;90:1112–1121.

    Article  Google Scholar 

  20. Lavori PW. Clinical trials in psychiatry: should protocol deviation censor patient data? Neu-ropsychopharmacology. 1992;6:39–48.

    CAS  PubMed  Google Scholar 

  21. Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics. 1982;38:963–974.

    Article  CAS  PubMed  Google Scholar 

  22. Little R, Yau L. Intent-to-treat analysis for longitudinal studies with drop-outs. Biometrics. 1996; 52:1324–1333.

    Article  CAS  PubMed  Google Scholar 

  23. Gibbons RD, Hedeker D, Elkin I, et al. Some conceptual and statistical issues in analysis of longitudinal psychiatric data. Application to the NIMH Treatment of Depression Collaborative Research Program dataset. Arch Gen Psychiatry. 1993;50:739–750.

    Article  CAS  PubMed  Google Scholar 

  24. Heyting A, Tolboom JT. Essers JG. Statistical handling of drop-outs in longitudinal clinical trials. Stat Med. 1992;11:2043–2061.

    Article  CAS  PubMed  Google Scholar 

  25. Lavori PW, Dawson R, Shera D. A multiple imputation strategy for clinical trials with truncation of patient data. Stat Med. 1995;14:1913–1925.

    Article  CAS  PubMed  Google Scholar 

  26. Siddiqui O, Ali MW. A comparison of the random-effects pattern mixture model with last-observa-tion-carried-forward (LOCF) analysis in longitudinal clinical trials with dropouts. J Biopharm Stat. 1998:8:545–563.

    Article  CAS  PubMed  Google Scholar 

  27. Shao J, Zhong B. Last observation carry-forward and last observation analysis. Stat Med. 2003;22: 2429–2441.

    Article  PubMed  Google Scholar 

  28. Carpenter J, Kenward M, Evans S, White I. Last observation carry-forward and last observation analysis. Letter to the Editor. Stat Med. 2004;23: 3241–3244.

    Article  PubMed  Google Scholar 

  29. Cook RJ, Zeng L, Yi GY. Marginal analysis of incomplete longitudinal binary data: a cautionary note on LOCF imputation. Biometrics. 2004;60: 820–828.

    Article  PubMed  Google Scholar 

  30. Molenberghs G. Verbeke G. Models for Discrete Longitudinal Data. New York: Springer 2005.

    Google Scholar 

  31. Beunckens C, Molenberghs G, Kenward MG. Direct likelihood analysis versus simple forms of imputation for missing data in randomized clinical trials. Clin Trials. 2005;2:379–386.

    Article  PubMed  Google Scholar 

  32. Rubin DB, Stern HS, Vehovar V. Handling “don’t know” survey responses: the case of the Slovenian plebiscite. J Am Stat Assoc. 1995;90:822–828.

    Google Scholar 

  33. Hill JO, Hauptman J, Anderson JW, Fujioka K, O’Neil PM, Smith DK, Zavoral JH, Aronne LJ. Orli-stat, a lipase inhibitor, for weight maintenance after conventional dieting: a 1-yr study. Am J Clin Nutr. 1999;69:1108–1116.

    Article  CAS  PubMed  Google Scholar 

  34. Liang K, Zeger S. Longitudinal data analysis of continuous and discrete responses for pre-post designs. Sankhya: Indian J Stat. 2000;62(Series B): 134–148.

    Google Scholar 

  35. Molenberghs G, Kenward MG, Lesaffre E. The analysis of longitudinal ordinal data with non-random dropout. Biometrika. 1997;84:33–44.

    Article  Google Scholar 

  36. Laird NM. Discussion to Diggle PJ, Kenward MG. Informative dropout in longitudinal data analysis. Appl Stat. 1994;43:84.

    Google Scholar 

  37. Rubin DB. Discussion to Diggle PJ, Kenward MG. Informative dropout in longitudinal data analysis. Appl Stat. 1994;43:80–82.

    Google Scholar 

  38. Copas JB, Li HG. Inference for non-random samples (with discussion). J Royal Stat Soc B. 1997; 59:55–96.

    Article  Google Scholar 

  39. Draper D. Assessment and propagation of model uncertainty (with discussion). J Royal Stat Soc B. 1995:57:45–97.

    Google Scholar 

  40. Kenward MG. Selection models for repeated measurements with non-random dropout: an illustration of sensitivity. Stat Med. 1998;17:2723– 2732.

    Article  CAS  PubMed  Google Scholar 

  41. Diggle PD, Kenward MG. Informative dropout in longitudinal data analysis (with discussion). Appl Stat. 1994;43:49–93.

    Article  Google Scholar 

  42. Rotnitzky A, Robins JM, Scharfstein DO. Semi-parametric regression for repeated outcomes with nonignorable nonresponse. J Am Stat Assoc. 1998;93:1321–1339.

    Article  Google Scholar 

  43. Little RJA. Pattern-mixture models for multivariate incomplete data. J Am Stat Assoc. 1993;88: 125–134.

    Google Scholar 

  44. Little RJA. A class of pattern-mixture models for normal incomplete data. Biometrika. 1994;81: 471–483.

    Article  Google Scholar 

  45. Wu MC, Carroll RJ. Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics. 1988;44:175–188.

    Article  Google Scholar 

  46. Ten Have TR. Kumelman AR. Pulkstenis EP, Lan-dis JR. Mixed effects logistic regression models for longitudinal binary response data with informative drop-out. Biometrics. 1998;54:367–385.

    Article  PubMed  Google Scholar 

  47. Wu MC, Bailey KR. Estimation and comparison of changes in the presence of informative right censoring: conditional linear model. Biometrics. 1989;45:939–955.

    Article  CAS  PubMed  Google Scholar 

  48. Mori M. Woodworth GG, Woolson RF. Application of empirical Bayes inference to estimation of rate of change in the presence of informative right censoring. Stat Med. 1992;11:621–631.

    Article  CAS  PubMed  Google Scholar 

  49. Follmann D, Wu M. An approximate generalized linear model with random effects for informative missing data. Biometrics. 1995;51:151–168.

    Article  CAS  PubMed  Google Scholar 

  50. Collins LM. Schafer JL. Kam CM. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychol Methods. 2001; 6:330–351.

    Article  CAS  PubMed  Google Scholar 

  51. Lipkovich I, Duan V, Ahmed S. Multiple imputation compared with restricted pseudo-likelihood and generalized estimating equations for analysis of binary repeated measures in clinical studies. Pharm Stat. 2005;4:267–285.

    Article  Google Scholar 

  52. Zhu HT, Lee SY. Local influence for incomplete-data models. J Royal Stat Soc B. 2001;63:111–126.

    Article  Google Scholar 

  53. Verbeke G, Molenberghs G, Thijs H, Lesaffre E, Kenward MG. Sensitivity analysis for nonrandom dropout: a local influence approach. Biometrics. 2001;57:7–14.

    Article  CAS  PubMed  Google Scholar 

  54. Thijs H, Molenberghs G, Verbeke G. The milk protein trial: influence analysis of the dropout process. Biometric J. 2000;42:617–646.

    Article  Google Scholar 

  55. Molenberghs G, Verbeke G, Thijs H, Lesaffre E, Kenward M. Mastitis in dairy cattle: local influence to assess sensitivity of the dropout process. Comput Stat Data Anal. 2001;37:93–113.

    Article  Google Scholar 

  56. Troxel AB. Ma G. Heitjan DF. An index of local sensitivity to nonignorability. Statistica Sinica. 2004;14:1221–1237

    Google Scholar 

  57. Ma G, Troxel AB, Heitjan DF. An index of local sensitivity to nonignorable drop-out in longitudinal modeling. Stat Med. 2005;24:2129–2150.

    Article  PubMed  Google Scholar 

  58. Ibrahim JG, Chen MH, Lipsitz SR, Herring AH. Missing-data methods for generalized linear models: a comparative review, J Am Stat Assoc. 2005;100:332–346.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig H. Mallinckrodt PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallinckrodt, C.H., Lane, P.W., Schnell, D. et al. Recommendations for the Primary Analysis of Continuous Endpoints in Longitudinal Clinical Trials. Ther Innov Regul Sci 42, 303–319 (2008). https://doi.org/10.1177/009286150804200402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/009286150804200402

Key Words

Navigation