J Neurol Surg B Skull Base 2014; 75(05): 293-300
DOI: 10.1055/s-0033-1361837
Invited Review
Georg Thieme Verlag KG Stuttgart · New York

Anatomy and Cellular Constituents of the Human Olfactory Mucosa: A Review

C. Russell Chen
1   Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
,
Carolina Kachramanoglou
1   Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
,
Daqing Li
1   Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
,
Peter Andrews
2   Department of ENT, Royal National Throat Nose and Ear Hospital, London, United Kingdom
,
David Choi
1   Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
› Author Affiliations
Further Information

Publication History

11 August 2012

07 October 2013

Publication Date:
26 June 2014 (online)

Abstract

Studies using animal models have recently suggested that the olfactory mucosa may be a source of cells capable of stimulating and contributing to complex neurologic regeneration. Several groups have already transplanted cell derivatives from the olfactory mucosa into injury models, and the results so far have been promising. To fully appreciate the meaning of these experiments, a better understanding of the cellular biology and physiology of the olfactory system is necessary. It is therefore of utmost importance for us to first identify and understand its constituents.

 
  • References

  • 1 Nordin S, Brämerson A. Complaints of olfactory disorders: epidemiology, assessment and clinical implications. Curr Opin Allergy Clin Immunol 2008; 8 (1) 10-15
  • 2 Keyvan-Fouladi N, Raisman G, Li Y. Functional repair of the corticospinal tract by delayed transplantation of olfactory ensheathing cells in adult rats. J Neurosci 2003; 23 (28) 9428-9434
  • 3 Raisman G. Olfactory ensheathing cells—another miracle cure for spinal cord injury?. Nat Rev Neurosci 2001; 2 (5) 369-375
  • 4 Mackay-Sim A, Féron F, Cochrane J , et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 2008; 131 (Pt 9) 2376-2386
  • 5 Seiden AM. Taste and Smell Disorders. New York, NY: Thieme; 1997
  • 6 Féron F, Perry C, McGrath JJ, Mackay-Sim A. New techniques for biopsy and culture of human olfactory epithelial neurons. Arch Otolaryngol Head Neck Surg 1998; 124 (8) 861-866
  • 7 Leopold DA, Hummel T, Schwob JE, Hong SC, Knecht M, Kobal G. Anterior distribution of human olfactory epithelium. Laryngoscope 2000; 110 (3 Pt 1) 417-421
  • 8 Paik SI, Lehman MN, Seiden AM, Duncan HJ, Smith DV. Human olfactory biopsy. The influence of age and receptor distribution. Arch Otolaryngol Head Neck Surg 1992; 118 (7) 731-738
  • 9 Watelet JB, Strolin-Benedetti M, Whomsley R. Defence mechanisms of olfactory neuro-epithelium: mucosa regeneration, metabolising enzymes and transporters. B-ENT 2009; 5 (Suppl 13): 21-37
  • 10 Holbrook EH, Leopold DA, Schwob JE. Abnormalities of axon growth in human olfactory mucosa. Laryngoscope 2005; 115 (12) 2144-2154
  • 11 Cuschieri A, Bannister LH. The development of the olfactory mucosa in the mouse: light microscopy. J Anat 1975; 119 (Pt 2) 277-286
  • 12 Cuschieri A, Bannister LH. The development of the olfactory mucosa in the mouse: electron microscopy. J Anat 1975; 119 (Pt 3) 471-498
  • 13 Getchell TV, Bartoshuk LM, Doty RL, Snow JB. Smell and Taste in Health and Disease. New York, NY: Raven Press; 1991
  • 14 Farbman AI, Squinto LM. Early development of olfactory receptor cell axons. Brain Res 1985; 351 (2) 205-213
  • 15 Marin-Padilla M, Amieva MR. Early neurogenesis of the mouse olfactory nerve: Golgi and electron microscopic studies. J Comp Neurol 1989; 288 (2) 339-352
  • 16 Valverde F, Santacana M, Heredia M. Formation of an olfactory glomerulus: morphological aspects of development and organization. Neuroscience 1992; 49 (2) 255-275
  • 17 Bossy J. Development of olfactory and related structures in staged human embryos. Anat Embryol (Berl) 1980; 161 (2) 225-236
  • 18 Pyatkina GA. Development of the olfactory epithelium in man. Z Mikrosk Anat Forsch 1982; 96 (2) 361-372
  • 19 Johnson EW, Eller PM, Jafek BW. Distribution of OMP-, PGP 9.5- and CaBP-like immunoreactive chemoreceptor neurons in the developing human olfactory epithelium. Anat Embryol (Berl) 1995; 191 (4) 311-317
  • 20 Chuah MI, Zheng DR. The human primary olfactory pathway: fine structural and cytochemical aspects during development and in adults. Microsc Res Tech 1992; 23 (1) 76-85
  • 21 Sarnat HB. Olfactory reflexes in the newborn infant. J Pediatr 1978; 92 (4) 624-626
  • 22 Winberg J, Porter RH. Olfaction and human neonatal behaviour: clinical implications. Acta Paediatr 1998; 87 (1) 6-10
  • 23 Farbman AI, Margolis FL. Olfactory marker protein during ontogeny: immunohistochemical localization. Dev Biol 1980; 74 (1) 205-215
  • 24 Weiler E, Benali A. Olfactory epithelia differentially express neuronal markers. J Neurocytol 2005; 34 (3–5) 217-240
  • 25 Kimura M, Umehara T, Udagawa J, Kawauchi H, Otani H. Development of olfactory epithelium in the human fetus: scanning electron microscopic observations. Congenit Anom (Kyoto) 2009; 49 (3) 102-107
  • 26 Gu J, Su T, Chen Y, Zhang QY, Ding X. Expression of biotransformation enzymes in human fetal olfactory mucosa: potential roles in developmental toxicity. Toxicol Appl Pharmacol 2000; 165 (2) 158-162
  • 27 Heydel J-M, Holsztynska EJ, Legendre A, Thiebaud N, Artur Y, Le Bon A-M. UDP-glucuronosyltransferases (UGTs) in neuro-olfactory tissues: expression, regulation, and function. Drug Metab Rev 2010; 42 (1) 74-97
  • 28 Smithson LJ, Kawaja MD. Microglial/macrophage cells in mammalian olfactory nerve fascicles. J Neurosci Res 2010; 88 (4) 858-865
  • 29 Kelly DE, Wood RL, Enders AC. Bailey's Textbook of Microscopic Anatomy. Baltimore, MD: Williams and Wilkins; 1984
  • 30 Jafek BW, Murrow B, Michaels R, Restrepo D, Linschoten M. Biopsies of human olfactory epithelium. Chem Senses 2002; 27 (7) 623-628
  • 31 Ross MH, Kaye GI, Pawlina W. Histology: A Text and Atlas. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2003
  • 32 Standring S, Borley NR. Gray's Anatomy: The Anatomical Basis of Clinical Practice. Madrid, Spain: Churchill Livingstone; 2008
  • 33 Carnicelli V, Santoro A, Sellari-Franceschini S, Berrettini S, Zucchi R. Expression of trace amine-associated receptors in human nasal mucosa. Chemosens Percep 2010; 3 (2) 99-107
  • 34 Elmas C, Erdoğan D, Ozoğul C. Expression of growth factors in fetal human olfactory mucosa during development. Growth Dev Aging 2003; 67 (1) 11-25
  • 35 Petruson B, Hansson HA, Karlsson G. Structural and functional aspects of cells in the nasal mucociliary system. Arch Otolaryngol 1984; 110 (9) 576-581
  • 36 Fawcett DW, Raviola E. Bloom and Fawcett, a Textbook of Histology. New York, NY: Chapman & Hall; 1994
  • 37 Kratzing JE. The anatomy and histology of the nasal cavity of the koala (Phascolarctos cinereus). J Anat 1984; 138 (Pt 1) 55-65
  • 38 Lovell MA, Jafek BW, Moran DT, Rowley III JC. Biopsy of human olfactory mucosa. An instrument and a technique. Arch Otolaryngol 1982; 108 (4) 247-249
  • 39 Feng WH, Kauer JS, Adelman L, Talamo BR. New structure, the “olfactory pit,” in human olfactory mucosa. J Comp Neurol 1997; 378 (4) 443-453
  • 40 Nakashima T, Kimmelman CP, Snow Jr JB. Structure of human fetal and adult olfactory neuroepithelium. Arch Otolaryngol 1984; 110 (10) 641-646
  • 41 Polyzonis BM, Kafandaris PM, Gigis PI, Demetriou T. An electron microscopic study of human olfactory mucosa. J Anat 1979; 128 (Pt 1) 77-83
  • 42 Moran DT, Rowley III JC, Jafek BW. Electron microscopy of human olfactory epithelium reveals a new cell type: the microvillar cell. Brain Res 1982; 253 (1–2) 39-46
  • 43 Morrison EE, Costanzo RM. Morphology of olfactory epithelium in humans and other vertebrates. Microsc Res Tech 1992; 23 (1) 49-61
  • 44 Ota Y. Study of the fifth-type cell in the olfactory epithelium. [in Japanese]. Nippon Jibiinkoka Gakkai Kaiho 1998; 101 (10) 1234-1249
  • 45 Schwob JE. Neural regeneration and the peripheral olfactory system. Anat Rec 2002; 269 (1) 33-49
  • 46 Morrison EE, Costanzo RM. Morphology of the human olfactory epithelium. J Comp Neurol 1990; 297 (1) 1-13
  • 47 Bloom G, Engström H. The structure of the epithelial surface in the olfactory region. Exp Cell Res 1952; 3 (4) 699-701
  • 48 Ganong WF. Review of Medical Physiology. 22nd ed. New Yori, NY: McGraw-Hill Medical; 2005
  • 49 Delay RJ, Dionne VE. Coupling between sensory neurons in the olfactory epithelium. Chem Senses 2003; 28 (9) 807-815
  • 50 Smutzer G, Lee VM, Trojanowski JQ, Arnold SE. Human olfactory mucosa in schizophrenia. Ann Otol Rhinol Laryngol 1998; 107 (4) 349-355
  • 51 Lee VM, Pixley SK. Age and differentiation-related differences in neuron-specific tubulin immunostaining of olfactory sensory neurons. Brain Res Dev Brain Res 1994; 83 (2) 209-215
  • 52 Choi D, Li D, Law S, Powell M, Raisman G. A prospective observational study of the yield of olfactory ensheathing cells cultured from biopsies of septal nasal mucosa. Neurosurgery 2008; 62 (5) 1140-1144 ; discussion 1144–1145
  • 53 Hahn CG, Han LY, Rawson NE , et al. In vivo and in vitro neurogenesis in human olfactory epithelium. J Comp Neurol 2005; 483 (2) 154-163
  • 54 Takahashi S, Iwanaga T, Takahashi Y, Nakano Y, Fujita T. Neuron-specific enolase, neurofilament protein and S-100 protein in the olfactory mucosa of human fetuses. An immunohistochemical study. Cell Tissue Res 1984; 238 (2) 231-234
  • 55 Calof AL, Bonnin A, Crocker C , et al. Progenitor cells of the olfactory receptor neuron lineage. Microsc Res Tech 2002; 58 (3) 176-188
  • 56 Pixley SK. CNS glial cells support in vitro survival, division, and differentiation of dissociated olfactory neuronal progenitor cells. Neuron 1992; 8 (6) 1191-1204
  • 57 Hosaka Y, Yanase H, Iwanaga T. Morphological analysis of olfactory receptor cells using whole-mount preparations of the rat nasal mucosa. J Vet Med Sci 1998; 60 (8) 897-904
  • 58 Witt M, Bormann K, Gudziol V , et al. Biopsies of olfactory epithelium in patients with Parkinson's disease. Mov Disord 2009; 24 (6) 906-914
  • 59 Margolis FL. Olfactory marker protein (OMP). Scand J Immunol Suppl 1982; 9: 181-199
  • 60 Nakashima T, Kimmelman CP, Snow Jr JB. Olfactory marker protein in the human olfactory pathway. Arch Otolaryngol 1985; 111 (5) 294-297
  • 61 Chuah MI, Zheng DR. Olfactory marker protein is present in olfactory receptor cells of human fetuses. Neuroscience 1987; 23 (1) 363-370
  • 62 Sakai M, Ashihara M, Nishimura T, Nagatsu I. Carnosine-like immunoreactivity in human olfactory mucosa. Acta Otolaryngol 1990; 109 (5–6) 450-453
  • 63 Weiler E, Farbman AI. Supporting cell proliferation in the olfactory epithelium decreases postnatally. Glia 1998; 22 (4) 315-328
  • 64 Hegg CC, Irwin M, Lucero MT. Calcium store-mediated signaling in sustentacular cells of the mouse olfactory epithelium. Glia 2009; 57 (6) 634-644
  • 65 Hempstead JL, Morgan JI. Monoclonal antibodies to the rat olfactory sustentacular cell. Brain Res 1983; 288 (1–2) 289-295
  • 66 Goldstein BJ, Schwob JE. Analysis of the globose basal cell compartment in rat olfactory epithelium using GBC-1, a new monoclonal antibody against globose basal cells. J Neurosci 1996; 16 (12) 4005-4016
  • 67 Pixley SK, Farbman AI, Menco BP. Monoclonal antibody marker for olfactory sustentacular cell microvilli. Anat Rec 1997; 248 (3) 307-321
  • 68 Minovi A, Witt M, Prescher A , et al. Expression and distribution of the intermediate filament protein nestin and other stem cell related molecules in the human olfactory epithelium. Histol Histopathol 2010; 25 (2) 177-187
  • 69 Mellert TK, Getchell ML, Sparks L, Getchell TV. Characterization of the immune barrier in human olfactory mucosa. Otolaryngol Head Neck Surg 1992; 106 (2) 181-188
  • 70 Golgi C. Sulla fina anatomia del bulbi olfattorii. Ti Rivista Sperimentale di Freniatria 1875; 1: 403-425
  • 71 Blanes T. Sobre algunos puntos dudosos de la estructura del bulbo olfatorio. Rev Trim Micrograf 1898; 3: 99-127
  • 72 Valverde F, Lopez-Mascaraque L. Neuroglial arrangements in the olfactory glomeruli of the hedgehog. J Comp Neurol 1991; 307 (4) 658-674
  • 73 Doucette R. Glial cells in the nerve fiber layer of the main olfactory bulb of embryonic and adult mammals. Microsc Res Tech 1993; 24 (2) 113-130
  • 74 Barber PC, Lindsay RM. Schwann cells of the olfactory nerves contain glial fibrillary acidic protein and resemble astrocytes. Neuroscience 1982; 7 (12) 3077-3090
  • 75 De Lorenzo AJ. Electron microscopic observations of the olfactory mucosa and olfactory nerve. J Biophys Biochem Cytol 1957; 3 (6) 839-850
  • 76 Peters A, Palay SL, Webster Hde F, de Webster HF. The Fine Structure of the Nervous System: Neurons and Their Supporting Cells. 3th rev. ed. New York, NY: Oxford University Press; 1991
  • 77 Raisman G. Specialized neuroglial arrangement may explain the capacity of vomeronasal axons to reinnervate central neurons. Neuroscience 1985; 14 (1) 237-254
  • 78 Doucette R. Development of the nerve fiber layer in the olfactory bulb of mouse embryos. J Comp Neurol 1989; 285 (4) 514-527
  • 79 Doucette JR. The glial cells in the nerve fiber layer of the rat olfactory bulb. Anat Rec 1984; 210 (2) 385-391
  • 80 Doucette R. Glial influences on axonal growth in the primary olfactory system. Glia 1990; 3 (6) 433-449
  • 81 Doucette R. PNS-CNS transitional zone of the first cranial nerve. J Comp Neurol 1991; 312 (3) 451-466
  • 82 Mori S, Leblond CP. Electron microscopic features and proliferation of astrocytes in the corpus callosum of the rat. J Comp Neurol 1969; 137 (2) 197-225
  • 83 Kott JN, Westrum LE, Raines EW, Sasahara M, Ross R. Olfactory ensheathing glia and platelet-derived growth factor B-chain reactivity in the transplanted rat olfactory bulb. Int J Dev Neurosci 1994; 12 (4) 315-323
  • 84 Ubink R, Halasz N, Zhang X, Dagerlind Å, Hökfelt T. Neuropeptide tyrosine is expressed in ensheathing cells around the olfactory nerves in the rat olfactory bulb. Neuroscience 1994; 60 (3) 709-726
  • 85 Cummings DM, Brunjes PC. Migrating luteinizing hormone-releasing hormone (LHRH) neurons and processes are associated with a substrate that expresses S100. Brain Res Dev Brain Res 1995; 88 (2) 148-157
  • 86 Gong Q, Bailey MS, Pixley SK, Ennis M, Liu W, Shipley MT. Localization and regulation of low affinity nerve growth factor receptor expression in the rat olfactory system during development and regeneration. J Comp Neurol 1994; 344 (3) 336-348
  • 87 Guenther J, Nick H, Monard D. A glia-derived neurite-promoting factor with protease inhibitory activity. EMBO J 1985; 4 (8) 1963-1966
  • 88 Zurn AD, Nick H, Monard D. A glia-derived nexin promotes neurite outgrowth in cultured chick sympathetic neurons. Dev Neurosci 1988; 10 (1) 17-24
  • 89 Miragall F, Kadmon G, Husmann M, Schachner M. Expression of cell adhesion molecules in the olfactory system of the adult mouse: presence of the embryonic form of N-CAM. Dev Biol 1988; 129 (2) 516-531
  • 90 Doucette R. Immunohistochemical localization of laminin, fibronectin and collagen type IV in the nerve fiber layer of the olfactory bulb. Int J Dev Neurosci 1996; 14 (7–8) 945-959
  • 91 Kafitz KW, Greer CA. Role of laminin in axonal extension from olfactory receptor cells. J Neurobiol 1997; 32 (3) 298-310
  • 92 Liesi P. Laminin-immunoreactive glia distinguish regenerative adult CNS systems from non-regenerative ones. EMBO J 1985; 4 (10) 2505-2511
  • 93 Franceschini IA, Barnett SC. Low-affinity NGF-receptor and E-N-CAM expression define two types of olfactory nerve ensheathing cells that share a common lineage. Dev Biol 1996; 173 (1) 327-343
  • 94 Barnett SC, Hutchins A-M, Noble M. Purification of olfactory nerve ensheathing cells from the olfactory bulb. Dev Biol 1993; 155 (2) 337-350
  • 95 Vickland H, Westrum LE, Kott JN, Patterson SL, Bothwell MA. Nerve growth factor receptor expression in the young and adult rat olfactory system. Brain Res 1991; 565 (2) 269-279
  • 96 Boyd JG, Doucette R, Kawaja MD. Defining the role of olfactory ensheathing cells in facilitating axon remyelination following damage to the spinal cord. FASEB J 2005; 19 (7) 694-703
  • 97 Tomé M, Siladzic E, Santos-Silva A, Barnett SC. Calponin is expressed by subpopulations of connective tissue cells but not olfactory ensheathing cells in the neonatal olfactory mucosa. BMC Neurosci 2007; 8: 74
  • 98 Guérout N, Derambure C, Drouot L , et al. Comparative gene expression profiling of olfactory ensheathing cells from olfactory bulb and olfactory mucosa. Glia 2010; 58 (13) 1570-1580
  • 99 Rela L, Bordey A, Greer CA. Olfactory ensheathing cell membrane properties are shaped by connectivity. Glia 2010; 58 (6) 665-678
  • 100 Lakatos A, Franklin RJ, Barnett SC. Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes. Glia 2000; 32 (3) 214-225
  • 101 Santos-Silva A, Fairless R, Frame MC , et al. FGF/heparin differentially regulates Schwann cell and olfactory ensheathing cell interactions with astrocytes: a role in astrocytosis. J Neurosci 2007; 27 (27) 7154-7167
  • 102 Tang ZP, Liu N, Li ZW , et al. In vitro evaluation of the compatibility of a novel collagen-heparan sulfate biological scaffold with olfactory ensheathing cells. Chin Med J (Engl) 2010; 123 (10) 1299-1304
  • 103 Anton ES, Weskamp G, Reichardt LF, Matthew WD. Nerve growth factor and its low-affinity receptor promote Schwann cell migration. Proc Natl Acad Sci U S A 1994; 91 (7) 2795-2799
  • 104 Caggiano M, Kauer JS, Hunter DD. Globose basal cells are neuronal progenitors in the olfactory epithelium: a lineage analysis using a replication-incompetent retrovirus. Neuron 1994; 13 (2) 339-352
  • 105 Schwob JE. Restoring olfaction: a view from the olfactory epithelium. Chem Senses 2005; 30 (Suppl. 01) i131-i132
  • 106 Farbman AI. Developmental biology of olfactory sensory neurons. Semin Cell Biol 1994; 5 (1) 3-10
  • 107 Graziadei PPC. Cell dynamics in the olfactory mucosa. Tissue Cell 1973; 5 (1) 113-131
  • 108 Roisen FJ, Klueber KM, Lu CL , et al. Adult human olfactory stem cells. Brain Res 2001; 890 (1) 11-22
  • 109 Lendahl U, Zimmerman LB, McKay RDG. CNS stem cells express a new class of intermediate filament protein. Cell 1990; 60 (4) 585-595
  • 110 Doyle KL, Khan M, Cunningham AM. Expression of the intermediate filament protein nestin by sustentacular cells in mature olfactory neuroepithelium. J Comp Neurol 2001; 437 (2) 186-195
  • 111 Marshall CT, Lu C, Winstead W , et al. The therapeutic potential of human olfactory-derived stem cells. Histol Histopathol 2006; 21 (6) 633-643
  • 112 Arnold SE, Han L-Y, Moberg PJ , et al. Dysregulation of olfactory receptor neuron lineage in schizophrenia. Arch Gen Psychiatry 2001; 58 (9) 829-835
  • 113 Carter LA, MacDonald JL, Roskams AJ. Olfactory horizontal basal cells demonstrate a conserved multipotent progenitor phenotype. J Neurosci 2004; 24 (25) 5670-5683
  • 114 Leung CT, Coulombe PA, Reed RR. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci 2007; 10 (6) 720-726
  • 115 Mackay-Sim A, Kittel P. Cell dynamics in the adult mouse olfactory epithelium: a quantitative autoradiographic study. J Neurosci 1991; 11 (4) 979-984
  • 116 Mumm JS, Shou J, Calof AL. Colony-forming progenitors from mouse olfactory epithelium: evidence for feedback regulation of neuron production. Proc Natl Acad Sci U S A 1996; 93 (20) 11167-11172
  • 117 Graziadei PPC, Graziadei GA. Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol 1979; 8 (1) 1-18
  • 118 Huard JM, Youngentob SL, Goldstein BJ, Luskin MB, Schwob JE. Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J Comp Neurol 1998; 400 (4) 469-486
  • 119 Lindsay SL, Riddell JS, Barnett SC. Olfactory mucosa for transplant-mediated repair: a complex tissue for a complex injury?. Glia 2010; 58 (2) 125-134
  • 120 Duggan CD, Ngai J. Scent of a stem cell. Nat Neurosci 2007; 10 (6) 673-674
  • 121 Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 2000; 287 (5457) 1442-1446
  • 122 Yamagishi M, Nakamura H, Takahashi S, Nakano Y, Iwanaga T. Olfactory receptor cells: immunocytochemistry for nervous system-specific proteins and re-evaluation of their precursor cells. Arch Histol Cytol 1989; 52 (Suppl): 375-381
  • 123 Jang W, Youngentob SL, Schwob JE. Globose basal cells are required for reconstitution of olfactory epithelium after methyl bromide lesion. J Comp Neurol 2003; 460 (1) 123-140
  • 124 Chen X, Fang H, Schwob JE. Multipotency of purified, transplanted globose basal cells in olfactory epithelium. J Comp Neurol 2004; 469 (4) 457-474
  • 125 Yamagishi M, Nakamura H, Nakano Y, Kuwano R. Immunohistochemical study of the fourth cell type in the olfactory epithelium in guinea pigs and in a patient. ORL J Otorhinolaryngol Relat Spec 1992; 54 (2) 85-90
  • 126 Rowley III JC, Moran DT, Jafek BW. Peroxidase backfills suggest the mammalian olfactory epithelium contains a second morphologically distinct class of bipolar sensory neuron: the microvillar cell. Brain Res 1989; 502 (2) 387-400
  • 127 Miller ML, Andringa A, Evans JE, Hastings L. Microvillar cells of the olfactory epithelium: morphology and regeneration following exposure to toxic compounds. Brain Res 1995; 669 (1) 1-9
  • 128 Murrell W, Féron F, Wetzig A , et al. Multipotent stem cells from adult olfactory mucosa. Dev Dyn 2005; 233 (2) 496-515
  • 129 Delorme B, Nivet E, Gaillard J , et al. The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties. Stem Cells Dev 2010; 19 (6) 853-866
  • 130 Murrell W, Wetzig A, Donnellan M , et al. Olfactory mucosa is a potential source for autologous stem cell therapy for Parkinson's disease. Stem Cells 2008; 26 (8) 2183-2192
  • 131 Gomez G, Rawson NE, Hahn CG, Michaels R, Restrepo D. Characteristics of odorant elicited calcium changes in cultured human olfactory neurons. J Neurosci Res 2000; 62 (5) 737-749
  • 132 Audisio C, Raimondo S, Nicolino S , et al. Morphological and biomolecular characterization of the neonatal olfactory bulb ensheathing cell line. J Neurosci Methods 2009; 185 (1) 89-98
  • 133 Thompson RJ, Roberts B, Alexander CL, Williams SK, Barnett SC. Comparison of neuregulin-1 expression in olfactory ensheathing cells, Schwann cells and astrocytes. J Neurosci Res 2000; 61 (2) 172-185
  • 134 Ramón-Cueto A, Avila J. Olfactory ensheathing glia: properties and function. Brain Res Bull 1998; 46 (3) 175-187
  • 135 Doucette R. Glial progenitor cells of the nerve fiber layer of the olfactory bulb: effect of astrocyte growth media. J Neurosci Res 1993; 35 (3) 274-287
  • 136 Goodman MN, Silver J, Jacobberger JW. Establishment and neurite outgrowth properties of neonatal and adult rat olfactory bulb glial cell lines. Brain Res 1993; 619 (1–2) 199-213
  • 137 Pixley SK. The olfactory nerve contains two populations of glia, identified both in vivo and in vitro. Glia 1992; 5 (4) 269-284
  • 138 Pixley SK. Characterization of olfactory receptor neurons and other cell types in dissociated rat olfactory cell cultures. Int J Dev Neurosci 1996; 14 (7–8) 823-839
  • 139 Chuah MI, Au C. Olfactory Schwann cells are derived from precursor cells in the olfactory epithelium. J Neurosci Res 1991; 29 (2) 172-180
  • 140 Devon R, Doucette R. Olfactory ensheathing cells myelinate dorsal root ganglion neurites. Brain Res 1992; 589 (1) 175-179
  • 141 Gong Q, Liu W-L, Srodon M, Foster TD, Shipley MT. Olfactory epithelial organotypic slice cultures: a useful tool for investigating olfactory neural development. Int J Dev Neurosci 1996; 14 (7–8) 841-852
  • 142 Ramón-Cueto A, Pérez J, Nieto-Sampedro M. In vitro enfolding of olfactory neurites by p75 NGF receptor positive ensheathing cells from adult rat olfactory bulb. Eur J Neurosci 1993; 5 (9) 1172-1180