Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The pathogenesis of pituitary tumours

Key Points

Summary

  • The pituitary gland is required for the maintenance of normal homeostasis of the individual, and is essential for propagation of the species.

  • Pituitary tumours can be the cause of mood disorders, sexual dysfunction, infertility, obesity and disfigurement, visual disturbances, hypertension, diabetes mellitus and accelerated heart disease.

  • Pituitary tumours are found in 20% of the population, but only one-third of these give rise to clinical manifestations.

  • Hormones that modulate normal pituitary hormonal activity and growth factors that are implicated in normal fetal pituitary development have been implicated in pituitary tumour growth, but are not likely to be the cause of human pituitary tumours.

  • Discrepancies between mouse models and human pituitary tumours might reflect different mechanisms of tumorigenesis, species variations or distinct methodologies.

  • Genetic mutations that are characterized in other human neoplasms are rare in human pituitary tumours.

  • Only a small percentage of pituitary tumours are associated with the inherited disorder, multiple endocrine neoplasia type 1 syndrome.

Abstract

Pituitary tumours are common and show a range of hormonal and proliferative behaviours that provide a model for the study of neoplasia mechanisms. Mutations in classic oncogenes and tumour-suppressor genes, however, are rarely associated with these tumours. In fact, most mechanisms of endocrine tumorigenesis differ significantly from those associated with haematological malignancies and non-endocrine tumours. Instead, tumorigenesis is promoted by hormones and growth factors that are implicated in pituitary development. Several mouse models have validated the roles of these alterations, although there are many differences in disease pathogenesis between mice and humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pituitary anatomy and cell types.
Figure 2: Regulatory pathways in pituitary somatotrophs.
Figure 3: Regulatory pathways in pituitary lactotrophs.
Figure 4: Regulatory pathways in pituitary gonadotrophs.
Figure 5: Regulatory pathways in pituitary corticotrophs.
Figure 6: Proposed model of pituitary tumorigenesis.

Similar content being viewed by others

References

  1. Asa, S. L. Tumors of the Pituitary Gland. Atlas of Tumor Pathology Third Series, Fascicle 22 (Armed Forces Institute of Pathology, Washington DC, 1998).

    Google Scholar 

  2. Asa, S. L. & Ezzat, S. The cytogenesis and pathogenesis of pituitary adenomas. Endocr. Rev. 19, 798?827 (1998).

    CAS  PubMed  Google Scholar 

  3. Asa, S. L. Transgenic and knockout mouse models clarify pituitary development, function and disease. Brain Pathol. 11, 371?383 (2001).

    CAS  PubMed  Google Scholar 

  4. Costello, R. T. Subclinical adenoma of the pituitary gland. Am. J. Pathol. 12, 205?215 (1936).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Burrow, G. N., Wortzman, G., Rewcastle, N. B., Holgate, R. C. & Kovacs, K. Microadenomas of the pituitary and abnormal sellar tomograms in an unselected autopsy series. N. Engl. J. Med. 304, 156?158 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Elster, A. D. Modern imaging of the pituitary. Radiology 187, 1?14 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Kane, L. A. et al. Pituitary adenomas in childhood and adolescence. J. Clin. Endocrinol. Metab. 79, 1135?1140 (1994).

    CAS  PubMed  Google Scholar 

  8. Gold, E. B. Epidemiology of pituitary adenomas. Epid. Rev. 3, 163?183 (1981).

    Article  CAS  Google Scholar 

  9. Herman, V., Fagin, J., Gonsky, R., Kovacs, K. & Melmed, S. Clonal origin of pituitary adenomas. J. Clin. Endocrinol. Metab. 71, 1427?1433 (1990).Using X-chromosome inactivation analysis, this was one of the first reports to show that human pituitary adenomas are monoclonal in composition. These studies helped set the stage for searches to identify intrinsic pituitary defects that contribute to pituitary neoplastic transformation.

    Article  CAS  PubMed  Google Scholar 

  10. Alexander, J. M. et al. Clinically nonfunctioning pituitary tumors are monoclonal in origin. J. Clin. Invest. 86, 336?340 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schulte, H. M. et al. Clonal composition of pituitary adenomas in patients with Cushing's disease: determination by X-chromosome inactivation analysis. J. Clin. Endocrinol. Metab. 73, 1302?1308 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Gicquel, C., LeBouc, Y., Luton, J.-P., Girad, F. & Bertagna, X. Monoclonality of corticotroph macroadenomas in Cushing's disease. J. Clin. Endocrinol. Metab. 75, 472?475 (1992).

    CAS  PubMed  Google Scholar 

  13. Vallar, L., Spada, A. & Giannattasio, G. Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature 330, 566?568 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. Lyons, J. et al. Two G protein oncogenes in human endocrine tumors. Science 249, 655?659 (1990).This study identified oncogenic mutations in G-protein α-chain genes that mediate hormone signalling in human tumours of pituitary and other endocrine glands.

    Article  CAS  PubMed  Google Scholar 

  15. Hayward, B. E. et al. Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. J. Clin. Invest 107, R31?R36 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Landis, C. A. et al. Clinical characteristics of acromegalic patients whose pituitary tumors contain mutant Gs protein. J. Clin. Endocrinol. Metab. 71, 1416?1420 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Spada, A. et al. Clinical, biochemical and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase. J. Clin. Endocrinol. Metab. 71, 1421?1426 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Ezzat, S. et al. In vivo responsiveness of morphological variants of growth hormone-producing pituitary adenomas to octreotide. Eur. J. Endocrinol. 133, 686?690 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Harris, P. E. et al. Glycoprotein hormone α-subunit production in somatotroph adenomas with and without Gsα mutations. J. Clin. Endocrinol. Metab. 75, 918?923 (1992).

    CAS  PubMed  Google Scholar 

  20. Bertherat, J., Chanson, P. & Montminy, M. The cyclic adenosine 3′5′-monophosphate-responsive factor CREB is constitutively activated in human somatotroph adenomas. Mol. Endocrinol. 9, 777?783 (1995).

    CAS  PubMed  Google Scholar 

  21. Burton, F. H., Hasel, K. W., Bloom, F. E. & Sutcliffe, J. G. Pituitary hyperplasia and gigantism in mice caused by a cholera toxin transgene. Nature 350, 74?77 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Billestrup, N., Swanson, L. W. & Vale, W. Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro. Proc. Natl Acad. Sci. USA 83, 6854?6857 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin, S. et al. Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature 364, 208?213 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Godfrey, P. et al. GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nature Genet. 4, 227?232 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Asa, S. L. et al. Pituitary adenomas in mice transgenic for growth hormone-releasing hormone. Endocrinology 131, 2083?2089 (1992).This study proved for the first time that chronic, excess hormone stimulation can induce tumours in the target endocrine gland. The development of pituitary adenomas arising on the background of somatotroph hyperplasia indicated that hormones, as proliferative stimuli, predispose multiplying cells to additional genetic events, leading to transformation.

    Article  CAS  PubMed  Google Scholar 

  26. Dong, Q. et al. Screening of candidate oncogenes in human thyrotroph tumors: absence of activating mutations of the Gαq, Gα11, Gαs, or thyrotropin-releasing hormone receptor genes. J. Clin. Endocrinol. Metab. 81, 1134?1140 (1996).

    CAS  PubMed  Google Scholar 

  27. Oyesiku, N. M. et al. Pituitary adenomas: screening for Gαq mutations. J. Clin. Endocrinol. Metab. 82, 4184?4188 (1997).

    CAS  PubMed  Google Scholar 

  28. Williamson, E. A. et al. Gsα and Gi2α mutations in clinically non-functioning pituitary tumours. Clin. Endocrinol. 41, 815?820 (1994).

    Article  CAS  Google Scholar 

  29. Karga, H. J., Alexander, J. M., Hedley-Whyte, E. T., Klibanski, A. & Jameson, J. L. Ras mutations in human pituitary tumors. J. Clin. Endocrinol. Metab. 74, 914?919 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Cai, W. Y. et al. Ras mutations in human prolactinomas and pituitary carcinomas. J. Clin. Endocrinol. Metab. 78, 89?93 (1994).

    CAS  PubMed  Google Scholar 

  31. Pei, L., Melmed, S., Scheithauer, B., Kovacs, K. & Prager, D. H-ras mutations in human pituitary carcinoma metastases. J. Clin. Endocrinol. Metab. 78, 842?846 (1994).

    CAS  PubMed  Google Scholar 

  32. Kirschner, L. S. et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nature Genet. 26, 89?92 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Alvaro, V. et al. Protein kinase C activity and expression in normal and adenomatous human pituitaries. Int. J. Cancer 50, 724?730 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Alvaro, V. et al. Invasive human pituitary tumors express a point-mutated α-protein kinase-C. J. Clin. Endocrinol. Metab. 77, 1125?1129 (1993).

    CAS  PubMed  Google Scholar 

  35. Thorner, M. O. et al. Somatotroph hyperplasia: successful treatment of acromegaly by removal of a pancreatic islet tumor secreting a growth hormone-releasing factor. J. Clin. Invest. 70, 965?977 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sano, T., Asa, S. L. & Kovacs, K. Growth hormone-releasing hormone-producing tumors: clinical, biochemical, and morphological manifestations. Endocr. Rev. 9, 357?373 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Levy, A. & Lightman, S. L. Growth hormone-releasing hormone transcripts in human pituitary adenomas. J. Clin. Endocrinol. Metab. 74, 1474?1476 (1992).

    CAS  PubMed  Google Scholar 

  38. Thapar, K. et al. Overexpression of the growth-hormone-releasing hormone gene in acromegaly-associated pituitary tumors. An event associated with neoplastic progression and aggressive behavior. Am. J. Pathol. 151, 769?784 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Spada, A. et al. Lack of desensitization of adenomatous somatotrophs to growth hormone-releasing hormone in acromegaly. J. Clin. Endocrinol. Metab. 64, 585?591 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. Ezzat, S. et al. Somatotroph hyperplasia without pituitary adenoma associated with a long standing growth hormone-releasing hormone-producing bronchial carcinoid. J. Clin. Endocrinol. Metab. 78, 555?560 (1994).

    CAS  PubMed  Google Scholar 

  41. Hashimoto, K. et al. Identification of alternatively spliced messenger ribonucleic acid encoding truncated growth hormone-releasing hormone receptor in human pituitary adenomas. J. Clin. Endocrinol. Metab. 80, 2933?2939 (1995).

    CAS  PubMed  Google Scholar 

  42. Yamada, M. et al. Pituitary adenomas of patients with acromegaly express thyrotropin-releasing hormone receptor messenger RNA cloning and functional expression of the human thyrotropin-releasing hormone receptor gene. Biochem. Biophys. Res. Commun. 195, 737?745 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Scheithauer, B. W., Kovacs, K., Randall, R. V. & Ryan, N. Pituitary gland in hypothyroidism. Histologic and immunocytologic study. Arch. Pathol. Lab. Med. 109, 499?504 (1985).

    CAS  PubMed  Google Scholar 

  44. Yamada, M. et al. A novel transcript for the thyrotropin-releasing hormone receptor in human pituitary and pituitary tumors. J. Clin. Endocrinol. Metab. 82, 4224?4228 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Asa, S. L., Penz, G., Kovacs, K. & Ezrin, C. Prolactin cells in the human pituitary. A quantitative immunocytochemical analysis. Arch. Pathol. Lab. Med. 106, 360?363 (1982).

    CAS  PubMed  Google Scholar 

  46. Kovacs, K., Stefaneanu, L., Ezzat, S. & Smyth, H. S. Prolactin-producing pituitary adenoma in a male-to-female transsexual patient with protracted estrogen administration. A morphologic study. Arch. Pathol. Lab. Med. 118, 562?565 (1994).

    CAS  PubMed  Google Scholar 

  47. Castrillo, J.-L., Theill, L. E. & Karin, M. Function of the homeodomain protein GHF1 in pituitary cell proliferation. Science 253, 197?199 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Lohrer, P. et al. Vascular endothelial growth factor production and regulation in rodent and human pituitary tumor cells in vitro. Neuroendocrinology 74, 95?105 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Heaney, A. P., Fernando, M. & Melmed, S. Functional role of estrogen in pituitary tumor pathogenesis. J. Clin. Invest 109, 277?283 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shen, E. S. et al. Estradiol induces galanin gene expression in the pituitary of the mouse in an estrogen receptor alpha-dependent manner. Endocrinology 140, 2628?2631 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Lee, E. J. et al. Adenovirus-directed expression of dominant negative estrogen receptor induces apoptosis in breast cancer cells and regression of tumors in nude mice. Mol. Med. 7, 773?782 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ezzat, S. The role of hormones, growth factors and their receptors in pituitary tumorigenesis. Brain Pathol. 11, 356?370 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Ezzat, S., Walpola, I. A., Ramyar, L., Smyth, H. S. & Asa, S. L. Membrane-anchored expression of transforming growth factor-α in human pituitary adenoma cells. J. Clin. Endocrinol. Metab. 80, 534?539 (1995).

    CAS  PubMed  Google Scholar 

  54. McAndrew, J., Paterson, A. J., Asa, S. L., McCarthy, K. J. & Kudlow, J. E. Targeting of transforming growth factor-α expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenomas. Endocrinology 136, 4479?4488 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. LeRiche, V., Asa, S. L. & Ezzat, S. Epidermal growth factor and its receptor (EGF-R) in human pituitary adenomas: EGF-R correlates with tumor aggressiveness. J. Clin. Endocrinol. Metab. 81, 656?662 (1996).

    CAS  PubMed  Google Scholar 

  56. Childs, G. V., Rougeau, D. & Unabia, G. Corticotropin-releasing hormone and epidermal growth factor: mitogens for anterior pituitary corticotropes. Endocrinology 136, 1595?1602 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Roh, M., Paterson, A. J., Asa, S. L., Chin, E. & Kudlow, J. E. Stage-sensitive blockade of pituitary somatomammotrope development by targeted expression of a dominant negative epidermal growth factor receptor in transgenic mice. Mol. Endocrinol. 15, 600?613 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Ezzat, S., Zheng, L., Smyth, H. S. & Asa, S. L. The c-erbB-2/ neu proto-oncogene in human pituitary tumours. Clin Endocrinol (Oxf) 46, 599?606 (1997).

    Article  CAS  Google Scholar 

  59. Ying, S.-Y. Inhibins, activins, and follistatins: gonadal proteins modulating the secretion of follicle-stimulating hormone. Endocr. Rev. 9, 267?293 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Haddad, G. et al. Expression of activin/inhibin subunit messenger ribonucleic acids by gonadotroph adenomas. J. Clin. Endocrinol. Metab. 79, 1399?1403 (1994).

    CAS  PubMed  Google Scholar 

  61. Alexander, J. M., Jameson, J. L., Bikkal, H. A., Schwall, R. H. & Klibanski, A. The effects of activin on follicle-stimulating hormone secretion and biosynthesis in human glycoprotein hormone-producing pituitary adenomas. J. Clin. Endocrinol. Metab. 72, 1261?1267 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Penabad, J. L. et al. Decreased follistatin gene expression in gonadotroph adenomas. J. Clin. Endocrinol. Metab. 81, 3397?3403 (1996).

    CAS  PubMed  Google Scholar 

  63. Zhou, Y. et al. Truncated activin type I receptor Alk4 isoforms are dominant negative receptors inhibiting activin signaling. Mol. Endocrinol. 14, 2066?2075 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Ezzat, S., Smyth, H. S., Ramyar, L. & Asa, S. L. Heterogeneous in vivo and in vitro expression of basic fibroblast growth factor by human pituitary adenomas. J. Clin. Endocrinol. Metab. 80, 878?884 (1995).

    CAS  PubMed  Google Scholar 

  65. Li, Y. et al. Identification and characterization of high molecular weight forms of basic fibroblast growth factor in human pituitary adenomas. J. Clin. Endocrinol. Metab. 75, 1436?1441 (1992).

    CAS  PubMed  Google Scholar 

  66. Zimering, M. B. et al. Increased basic fibroblast growth factor in plasma from multiple endocrine neoplasia type 1: relation to pituitary tumor. J. Clin. Endocrinol. Metab. 76, 1182?1187 (1993).

    CAS  PubMed  Google Scholar 

  67. Asa, S. L., Ramyar, L., Murphy, P. R., Li, A. W. & Ezzat, S. The endogenous fibroblast growth factor-2 antisense gene product regulates pituitary cell growth and hormone production. Mol. Endocrinol. 15, 589?599 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Heaney, A. P., Horwitz, G. A., Wang, Z., Singson, R. & Melmed, S. Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nature Med. 5, 1317?1321 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Gonsky, R., Herman, V., Melmed, S. & Fagin, J. Transforming DNA sequences present in human prolactin-secreting pituitary tumors. Mol. Endocrinol. 5, 1687?1695 (1991).

    Article  CAS  PubMed  Google Scholar 

  70. Scully, K. M. & Rosenfeld, M. G. Pituitary development: regulatory codes in mammalian organogenesis. Science 295, 2231?2235 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Givol, D. & Yayon, A. Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. FASEB J. 6, 3362?3369 (1992).

    Article  CAS  PubMed  Google Scholar 

  72. Abbass, S. A. A., Asa, S. L. & Ezzat, S. Altered expression of fibroblast growth factor receptors in human pituitary adenomas. J. Clin. Endocrinol. Metab. 82, 1160?1166 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Ezzat, S., Zheng, L., Zhu, X. F., Wu, G. E. & Asa, S. L. Targeted expression of a human pituitary tumor-derived isoform of FGF receptor-4 recapitulates pituitary tumorigenesis. J. Clin. Invest. 109, 69?78 (2002).Describes a human pituitary-tumour-derived truncated FGFR4 isoform that is constitutively phosphorylated, with transforming ability shown in vitro and in vivo . Targeting of this receptor isoform to pituitary lactotrophs in transgenic mice results in adenomas that closely resemble primary human pituitary tumours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ezzat, S., Zheng, L., Yu, S. & Asa, S. L. A soluble dominant negative fibroblast growth factor receptor 4 isoform in human mcf-7 breast cancer cells. Biochem. Biophys. Res. Commun. 287, 60?65 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Cavallaro, U., Niedermeyer, J., Fuxa, M. & Christofori, G. N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nature Cell Biol. 3, 650?657 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Pei, L. & Melmed, S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol. Endocrinol. 11, 433?441 (1997).

    Article  CAS  PubMed  Google Scholar 

  77. Zou, H., McGarry, T. J., Bernal, T. & Kirschner, M. W. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285, 418?422 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Ramos-Morales, F. et al. Cell cycle regulated expression and phosphorylation of HPTTG proto-oncogene product. Oncogene 19, 403?409 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. McCabe, C. J. et al. Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J. Clin. Endocrinol. Metab. 87, 4238?4244 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Wood, D. F., Johnston, J. M. & Johnston, D. G. Dopamine, the dopamine D2 receptor and pituitary tumours. Clin Endocrinol (Oxf) 35, 455?466 (1991).

    Article  CAS  Google Scholar 

  81. Kanasaki, H., Fukunaga, K., Takahashi, K., Miyazaki, K. & Miyamoto, E. Involvement of p38 mitogen-activated protein kinase activation in bromocriptine-induced apoptosis in rat pituitary GH3 cells. Biol. Reprod. 62, 1486?1494 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Kelly, M. A. et al. Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 19, 103?113 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Asa, S. L., Kelly, M. A., Grandy, D. K. & Low, M. J. Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice. Endocrinology 140, 5348?5355 (1999).Female mice that lack the dopamine 2 receptor (D2R−/−) develop hyperprolactinaemia and massive lactotroph hyperplasia. The findings reveal a crucial role of dopamine in controlling pituitary growth. With age, the hyperplasia develops into multifocal adenomas, supporting a multistep mechanism for lactotroph tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  84. Fiorentini, C. et al. Nerve growth factor regulates dopamine D(2) receptor expression in prolactinoma cell lines via p75(NGFR)-mediated activation of nuclear factor-κB. Mol. Endocrinol. 16, 353?366 (2002).

    CAS  PubMed  Google Scholar 

  85. Friedman, E. et al. Normal structural dopamine type 2 receptor gene in prolactin-secreting and other pituitary tumors. J. Clin. Endocrinol. Metab. 78, 568?574 (1994).

    CAS  PubMed  Google Scholar 

  86. Schuff, K. G. et al. Lack of prolactin receptor signaling in mice results in lactotroph proliferation and prolactinomas by dopamine-dependent and -independent mechanisms. J. Clin. Invest. 110, 973?981 (2002).Mice with combined deficiencies of the dopamine 2 receptor (D2R), as well as the prolactin receptor (PRLR), develop larger pituitary lactotroph adenomas than those with isolated deficiency. These studies provide evidence for lactotroph proliferative autoregulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Devost, D. & Boutin, J. M. Autoregulation of the rat prolactin gene in lactotrophs. Mol. Cell Endocrinol. 158, 99?109 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Jin, L. et al. Prolactin receptor messenger ribonucleic acid in normal and neoplastic human pituitary tissues. J. Clin. Endocrinol. Metab. 82, 963?968 (1997).

    CAS  PubMed  Google Scholar 

  89. Levy, L. et al. Presence and characterization of the somatostatin precursor in normal human pituitaries and in growth hormone secreting adenomas. J. Clin. Endocrinol. Metab. 76, 85?90 (1993).

    CAS  PubMed  Google Scholar 

  90. Reubi, J. C. & Landolt, A. M. The growth hormone responses to octreotide in acromegaly correlate with adenoma somatostatin receptor status. J. Clin. Endocrinol. Metab. 68, 844?850 (1989).

    Article  CAS  PubMed  Google Scholar 

  91. Danila, D. C. et al. Somatostatin receptor-specific analogs: effects on cell proliferation and growth hormone secretion in human somatotroph tumors. J. Clin. Endocrinol. Metab. 86, 2976?2981 (2001).

    CAS  PubMed  Google Scholar 

  92. Brinkmeier, M. L. et al. Thyroid hormone-responsive pituitary hyperplasia independent of somatostatin receptor 2. Mol. Endocrinol. 15, 2129?2136 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Scheithauer, B. W., Kovacs, K. & Randall, R. V. The pituitary gland in untreated Addison's disease. A histologic and immunocytologic study of 18 adenohypophyses. Arch. Pathol. Lab. Med. 107, 484?487 (1983).

    CAS  PubMed  Google Scholar 

  94. Bamberger, C. M., Schulte, H. M. & Chrousos, G. P. Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocr. Rev. 17, 245?261 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. Hurley, D. M. et al. Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J. Clin. Invest. 87, 680?686 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Karl, M. et al. Cushing's disease preceded by generalized glucocorticoid resistance: clinical consequences of a novel dominant-negative glucocorticoid receptor mutation. Proc. Assoc. Am. Phys. 108, 296?307 (1996).

    CAS  PubMed  Google Scholar 

  97. Karl, M. et al. Nelson's syndrome associated with a somatic frame shift mutation in the glucocorticoid receptor gene. J. Clin. Endocrinol. Metab. 81, 124?129 (1996).

    CAS  PubMed  Google Scholar 

  98. Ando, S. et al. Aberrant alternative splicing of thyroid hormone receptor in a TSH- secreting pituitary tumor is a mechanism for hormone resistance. Mol. Endocrinol. 15, 1529?1538 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Abel, E. D. et al. Divergent roles for thyroid hormone receptor beta isoforms in the endocrine axis and auditory system. J. Clin. Invest. 104, 291?300 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Snyder, P. J. Gonadotroph cell adenomas of the pituitary. Endocr. Rev. 6, 552?563 (1985).

    Article  CAS  PubMed  Google Scholar 

  101. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295?300 (1992).Heterozygous animals for Rb deficiency were shown, unlike humans, not to be predisposed to the development of retinoblastoma. Instead, these mice display pituitary tumours arising from intermediate-lobe pituitary corticotroph cells.

    Article  CAS  PubMed  Google Scholar 

  102. Cryns, V. L., Alexander, J. M., Klibanski, A. & Arnold, A. The retinoblastoma gene in human pituitary tumors. J. Clin. Endocrinol. Metab. 77, 644?646 (1993).

    CAS  PubMed  Google Scholar 

  103. Simpson, D. J., Hibberts, N. A., McNicol, A. M., Clayton, R. N. & Farrell, W. E. Loss of pRb expression in pituitary adenomas is associated with methylation of the RB1 CpG island. Cancer Res. 60, 1211?1216 (2000).

    CAS  PubMed  Google Scholar 

  104. Woloschak, M., Yu, A., Xiao, J. & Post, K. Frequent loss of the P16INK4a gene product in human pituitary tumors. Cancer Res. 56, 2493?2496 (1996).

    CAS  PubMed  Google Scholar 

  105. Frost, S. J., Simpson, D. J., Clayton, R. N. & Farrell, W. E. Transfection of an inducible p16/CDKN2A construct mediates reversible growth inhibition and G1 arrest in the AtT20 pituitary tumor cell line. Mol. Endocrinol. 13, 1801?1810 (1999).Given that methylation of the CpG island within the CDKN2A gene promoter was associated with diminished protein levels in human pituitary tumours, this study showed that restoration of INK4A can result in cell-cycle arrest. These findings also raise the possibility of gene methylation as a pharmacological tool in the manipulation of pituitary tumours.

    Article  CAS  PubMed  Google Scholar 

  106. Nakayama, K. et al. Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85, 707?720 (1996).Kip1−/− mice were shown to frequently develop pituitary tumours spontaneously. Cell-cycle arrest that is mediated by TGF-β or contact inhibition remained intact in Kip1−/− cells, indicating that this cyclin-dependent kinase inhibitor is not required in these processes.

    Article  CAS  PubMed  Google Scholar 

  107. Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell 85, 721?732 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Fero, M. L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1-deficient mice. Cell 85, 733?744 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Park, M. S. et al. p27 and Rb are on overlapping pathways suppressing tumorigenesis in mice. Proc. Natl Acad. Sci. USA 96, 6382?6387 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tanaka, C. et al. Infrequent mutations of p27Kip1 gene and trisomy 12 in a subset of human pituitary adenomas. J. Clin. Endocrinol. Metab. 82, 3141?3147 (1997).

    CAS  PubMed  Google Scholar 

  111. Dahia, P. L. et al. Mutation and expression analysis of the p27/kip1 gene in corticotrophin-secreting tumours. Oncogene 16, 69?76 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Bamberger, C. M. et al. Reduced expression levels of the cell-cycle inhibitor p27Kip1 in human pituitary adenomas. Eur. J. Endocrinol. 140, 250?255 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Lidhar, K. et al. Low expression of the cell cycle inhibitor p27Kip1 in normal corticotroph cells, corticotroph tumors, and malignant pituitary tumors. J. Clin. Endocrinol. Metab. 84, 3823?3830 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Liu, W., Asa, S. L. & Ezzat, S. Vitamin D and its analog EB1089 induce p27 accumulation and diminish association of p27 with Skp2 and CDK2 independent of PTEN in pituitary corticotroph cells. Brain Pathol. 12, 412?419 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Tong, W. & Pollard, J. W. Genetic evidence for the interactions of cyclin D1 and p27(Kip1) in mice. Mol. Cell Biol. 21, 1319?1328 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Franklin, D. S. et al. CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev. 12, 2899?2911 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Levy, A., Hall, L., Yeundall, W. A. & Lightman, S. L. p53 gene mutations in pituitary adenomas: rare events. Clin Endocrinol (Oxf) 41, 809?814 (1994).

    Article  CAS  Google Scholar 

  118. Buckley, N. et al. p53 protein accumulation in Cushings adenomas and invasive non-functional adenomas. J. Clin. Endocrinol. Metab. 79, 1513?1516 (1994).

    CAS  PubMed  Google Scholar 

  119. Low, M. J., Liu, B., Hammer, G. D., Rubinstein, M. & Allen, R. G. Post-translational processing of proopiomelanocortin (POMC) in mouse pituitary melanotroph tumors induced by a POMC-simian virus 40 large T antigen transgene. J. Biol. Chem. 268, 24967?24975 (1993).

    Article  CAS  PubMed  Google Scholar 

  120. Kumar, T. R., Graham, K. E., Asa, S. L. & Low, M. J. Simian virus 40 T antigen-induced gonadotroph adenomas: a model of human null cell adenomas. Endocrinology 139, 3342?3351 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Gordon, J., Del Valle, L., Otte, J. & Khalili, K. Pituitary neoplasia induced by expression of human neurotropic polyomavirus, JCV, early genome in transgenic mice. Oncogene 19, 4840?4846 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Byström, C. et al. Localization of the MEN1 gene to a small region within chromosome 11q13 by deletion mapping in tumors. Proc. Natl Acad. Sci. USA 87, 1968?1972 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chandrasekharappa, S. C. et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276, 404?407 (1997).The identification of the gene that is responsible for hereditary MEN1 by positional cloning was pivotal in providing a key to understanding aberrant transcriptional events in endocrine tumorigenesis. It has also proved to be a useful tool in the early diagnosis of families who are predisposed to develop endocrine tumours, including those of the pituitary gland.

    Article  CAS  PubMed  Google Scholar 

  124. Gobl, A. E. et al. Menin represses JunD-activated transcription by a histone deacetylase-dependent mechanism. Biochim. Biophys. Acta 1447, 51?56 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Kaji, H., Canaff, L., Lebrun, J. J., Goltzman, D. & Hendy, G. N. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signaling. Proc. Natl Acad. Sci. USA 98, 3837?3842 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhuang, Z. et al. Mutations of the MEN1 tumor suppressor gene in pituitary tumors. Cancer Res. 57, 5446?5451 (1997).

    CAS  PubMed  Google Scholar 

  127. Asa, S. L., Somers, K. & Ezzat, S. The MEN-1 gene is rarely down-regulated in pituitary adenomas. J. Clin. Endocrinol. Metab. 83, 3210?3212 (1998).

    CAS  PubMed  Google Scholar 

  128. Vance, M. L. & Thorner, M. O. Prolactinomas. Endocrinol. Metab. Clin. N. Am. 16, 731?753 (1987).

    Article  CAS  Google Scholar 

  129. Ezzat, S. et al. Octreotide treatment of acromegaly. A randomized, multicenter study. Ann. Intern. Med. 117, 711?718 (1992).

    Article  CAS  PubMed  Google Scholar 

  130. Riley, D. J., Nikitin, A. Y. & Lee, W. H. Adenovirus-mediated retinoblastoma gene therapy suppresses spontaneous pituitary melanotroph tumors in Rb+/− mice. Nature Med. 2, 1316?1321 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Freese, A. et al. Transfection of human lactotroph adenoma cells with an adenovirus vector expressing tyrosine hydroxylase decreases prolactin release. J. Clin. Endocrinol. Metab. 81, 2401?2404 (1996).

    CAS  PubMed  Google Scholar 

  132. Hamilton, H. B. et al. Inhibition of cellular growth and induction of apoptosis in pituitary adenoma cell lines by the protein kinase C inhibitor hypericin: potential therapeutic application. J. Neurosurg. 85, 329?334 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Canadian Institutes of Health Research and the Toronto Medical Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia L. Asa.

Related links

Related links

DATABASES

Cancer.gov

pituitary tumours

GenBank

SV40 T antigen

LocusLink

ACTH

activins

ActRII

ALK4

CDC2

CDK2

CDK4

Cdkn2c

cortactin

CREB

CRH

cyclin D

cyclin E

D2R

EGF

EGFR

ERs

ERBB2

ERBB3

ERBB4

FAST

bFGF

FGF4

FGF8

FGFR1

FGFR2

FGFR3

FGFR4

follistatin

FSH

galanin

GAP43

GCR

GFG

Gh

GH

Ghrh

GHRH

GnRH

GSP

HRAS

INK4A

INK4B

INK4C

INK4D

JUND

Kip1

KIP1

KIP2

KRAS

MAPK

MDM2

MEN1

N-CAM

NF-κB

NGF

NRAS

p14

p19

p53

PIT1

PKA

PKC

PRKAR1

prolactin

Pttg

PTTG

Rb

RB

SMAD3

somatostatin

c-SRC

Sstr2

SSTR2

TGF-α

TGF-β

TRH

TSH

vasopressin

Vegf

VEGF

WAF1

OMIM

acromegaly

Carney's complex

Cushing's disease

McCune?Albright syndrome

MEN1 syndrome

FURTHER INFORMATION

Endocrine Society

Hormone Foundation

Pituitary Society

PNA

Glossary

SELLA TURCICA

The bony box that saddles the pituitary gland.

PROLACTINOMAS

Tumours of pituitary lactotrophs that produce prolactin.

MONOALLELIC IMPRINTING

Gene expression from a single allele, which is often associated with methylation of the promoter on the inactive allele.

SUPRASELLAR EXTENSION

Growing outside of the sella turcia upwards.

LOSS OF HETEROZYGOSITY (LOH)

Loss of one or more alleles on one member of a chromosome pair during tumorigenesis.

CYTODIFFERENTIATION

The process that is involved in specialized cell differentiation and maintenance of cell lineage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asa, S., Ezzat, S. The pathogenesis of pituitary tumours. Nat Rev Cancer 2, 836–849 (2002). https://doi.org/10.1038/nrc926

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc926

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing