Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas

Abstract

Constitutional SMARCB1 mutations at 22q11.23 have been found in 50% of familial and <10% of sporadic schwannomatosis cases1. We sequenced highly conserved regions along 22q from eight individuals with schwannomatosis whose schwannomas involved somatic loss of one copy of 22q, encompassing SMARCB1 and NF2, with a different somatic mutation of the other NF2 allele in every schwannoma but no mutation of the remaining SMARCB1 allele in blood and tumor samples. LZTR1 germline mutations were identified in seven of the eight cases. LZTR1 sequencing in 12 further cases with the same molecular signature identified 9 additional germline mutations. Loss of heterozygosity with retention of an LZTR1 mutation was present in all 25 schwannomas studied. Mutations segregated with disease in all available affected first-degree relatives, although four asymptomatic parents also carried an LZTR1 mutation. Our findings identify LZTR1 as a gene predisposing to an autosomal dominant inherited disorder of multiple schwannomas in 80% of 22q-related schwannomatosis cases lacking mutation in SMARCB1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of mutations identified in the LZTR1 gene in individuals with schwannomatosis.
Figure 2: Structural domains of LZTR1 and spatial predictions for missense alterations.
Figure 3: Pedigrees of families positive for LZTR1 mutation with information from relatives available for testing.

Similar content being viewed by others

Stylianos E. Antonarakis, Brian G. Skotko, … Roger H. Reeves

Accession codes

Primary accessions

ArrayExpress

Referenced accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Smith, M.J. et al. Frequency of SMARCB1 mutations in familial and sporadic schwannomatosis. Neurogenetics 13, 141–145 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Plotkin, S.R. et al. Update from the 2011 International Schwannomatosis Workshop: from genetics to diagnostic criteria. Am. J. Med. Genet. A. 161A, 405–416 (2013).

    Article  PubMed  Google Scholar 

  3. Smith, M.J. et al. Vestibular schwannomas occur in schwannomatosis and should not be considered an exclusion criterion for clinical diagnosis. Am. J. Med. Genet. A. 158A, 215–219 (2012).

    Article  PubMed  CAS  Google Scholar 

  4. Jacoby, L.B. et al. Molecular analysis of the NF2 tumor-suppressor gene in schwannomatosis. Am. J. Hum. Genet. 61, 1293–1302 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. MacCollin, M. et al. Familial schwannomatosis: exclusion of the NF2 locus as the germline event. Neurology 60, 1968–1974 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Hulsebos, T.J. et al. Germline mutation of INI1/SMARCB1 in familial schwannomatosis. Am. J. Hum. Genet. 80, 805–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sestini, R., Bacci, C., Provenzano, A., Genuardi, M. & Papi, L. Evidence of a four-hit mechanism involving SMARCB1 and NF2 in schwannomatosis-associated schwannomas. Hum. Mutat. 29, 227–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Hadfield, K.D. et al. Molecular characterisation of SMARCB1 and NF2 in familial and sporadic schwannomatosis. J. Med. Genet. 45, 332–339 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Boyd, C. et al. Alterations in the SMARCB1 (INI1) tumor suppressor gene in familial schwannomatosis. Clin. Genet. 74, 358–366 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Rousseau, G., Noguchi, T., Bourdon, V., Sobol, H. & Olschwang, S. SMARCB1/INI1 germline mutations contribute to 10% of sporadic schwannomatosis. BMC Neurol. 11, 9 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smith, M.J. et al. Frequency of SMARCB1 mutations in familial and sporadic schwannomatosis. Neurogenetics 13, 141–145 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Zeitouni, B. et al. SVDetect:a tool to identify genomic structural variations from paired-end and mate-pair sequencing data. Bioinformatics 26, 1895–1896 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thierry-Mieg, D. & Thierry-Mieg, J. AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol. 7 (suppl. 1), S12.1–S12.14 (2006).

    Google Scholar 

  14. Wu, C. et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 10, R130 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Frattini, V. et al. The integrated landscape of driver genomic alterations in glioblastoma. Nat. Genet. 45, 1141–1149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Senter, L. et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology 135, 419–428 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Sjursen, W. et al. Current clinical criteria for Lynch syndrome are not sensitive enough to identify MSH6 mutation carriers. J. Med. Genet. 47, 579–585 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Lalloo, F. & Evans, D.G. Familial breast cancer. Clin. Genet. 82, 105–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Rahman, N. & Scott, R.H. Cancer genes associated with phenotypes in monoallelic and biallelic mutation carriers: new lessons from old players. Hum. Mol. Genet. 16 (spec no 1), R60 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Perez-Torrado, R., Yamada, D. & Defossez, P.A. Born to bind: the BTB protein-protein interaction domain. Bioessays 28, 1194–1202 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Nacak, T.G., Leptien, K., Fellner, D., Augustin, H.G. & Kroll, J. The BTB-kelch protein LZTR-1 is a novel Golgi protein that is degraded upon induction of apoptosis. J. Biol. Chem. 281, 5065–5071 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Stogios, P.J. & Prive, G.G. The BACK domain in BTB-kelch proteins. Trends Biochem. Sci. 29, 634–637 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Stogios, P.J., Downs, G.S., Jauhal, J.J., Nandra, S.K. & Prive, G.G. Sequence and structural analysis of BTB domain proteins. Genome Biol. 6, R82 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kelly, K.E. & Daniel, J.M. POZ for effect—POZ-ZF transcription factors in cancer and development. Trends Cell Biol. 16, 578–587 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Dhanoa, B.S., Cogliati, T., Satish, A.G., Bruford, E.A. & Friedman, J.S. Update on the Kelch-like (KLHL) gene family. Hum. Genomics 7, 13 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Canning, P. et al. Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. J. Biol. Chem. 288, 7803–7814 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bennett, E.J., Rush, J., Gygi, S.P. & Harper, J.W. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 143, 951–965 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Adams, J., Kelso, R. & Cooley, L. The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol. 10, 17–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Lührig, S., Kolb, S., Mellies, N. & Nolte, J. The novel BTB-kelch protein, KBTBD8, is located in the Golgi apparatus and translocates to the spindle apparatus during mitosis. Cell Div. 8, 3 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Huynh, K.D. & Bardwell, V.J. The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene 17, 2473–2484 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Wong, C.W. & Privalsky, M.L. Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARα, and BCL-6. J. Biol. Chem. 273, 27695–27702 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Underhill, C., Qutob, M.S., Yee, S.P. & Torchia, J. A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J. Biol. Chem. 275, 40463–40470 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Nallani, K.C. & Sullivan, W.J. Jr. Identification of proteins interacting with Toxoplasma SRCAP by yeast two-hybrid screening. Parasitol. Res. 95, 236–242 (2005).

    Article  PubMed  Google Scholar 

  34. Pan, X., Zhai, L., Sun, R., Li, X. & Zeng, X. INI1/hSNF5/BAF47 represses c-fos transcription via a histone deacetylase–dependent manner. Biochem. Biophys. Res. Commun. 337, 1052–1058 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Ravasi, T. et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140, 744–752 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Wajapeyee, N., Serra, R.W., Zhu, X., Mahalingam, M. & Green, M.R. Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132, 363–374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pottier, N. et al. Expression of SMARCB1 modulates steroid sensitivity in human lymphoblastoid cells: identification of a promoter SNP that alters PARP1 binding and SMARCB1 expression. Hum. Mol. Genet. 16, 2261–2271 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Bush, M.L. et al. AR42, a novel histone deacetylase inhibitor, as a potential therapy for vestibular schwannomas and meningiomas. Neuro-oncol. 13, 983–999 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Buckley, P.G. et al. Identification of genetic aberrations on chromosome 22 outside the NF2 locus in schwannomatosis and neurofibromatosis type 2. Hum. Mutat. 26, 540–549 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Hulsebos, T.J. et al. Germline mutation of INI1/SMARCB1 in familial schwannomatosis. Am. J. Hum. Genet. 80, 805–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. MacCollin, M. et al. Familial schwannomatosis: exclusion of the NF2 locus as the germline event. Neurology 60, 1968–1974 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Sestini, R., Bacci, C., Provenzano, A., Genuardi, M. & Papi, L. Evidence of a four-hit mechanism involving SMARCB1 and NF2 in schwannomatosis-associated schwannomas. Hum. Mutat. 29, 227–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ng, P.C. & Henikoff, S. Predicting deleterious amino acid substitutions. Genome Res. 11, 863–874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schwarz, J.M., Rödelsperger, C., Schuelke, M. & Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 7, 575–576 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Marchler-Bauer, A. et al. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res. 37, D205 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Marchler-Bauer, A. & Bryant, S.H. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32, W327–W331 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marchler-Bauer, A. et al. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Kelley, L.A. & Sternberg, M.J. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Kiefer, F., Arnold, K., Künzli, M., Bordoli, L. & Schwede, T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 37, D387 (2009).

    CAS  PubMed  Google Scholar 

  54. Manuel, C.P. Protein modeling by e-mail. Nat. Biotechnol. 13, 658–660 (1995).

    Article  Google Scholar 

  55. Errington, W. et al. Adaptor protein self-assembly drives the control of a cullin-RING ubiquitin ligase. Structure 20, 1141–1153 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Li, X., Zhang, D., Hannink, M. & Beamer, L.J. Crystal structure of the Kelch domain of human Keap1. J. Biol. Chem. 279, 54750–54758 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Pagni, M. et al. MyHits: improvements to an interactive resource for analyzing protein sequences. Nucleic Acids Res. 35, W433–W437 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nakai, K. & Horton, P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24, 34–36 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Horton, P. et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 35, W585–W587 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tennessen, J.A. et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337, 64–69 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

Download references

Acknowledgements

We thank the patients for their participation in this study. A.P. is a recipient of a Children's Tumor Foundation Young Investigator Award (grant 2009-01-004). The study was supported in part by the Children's Tumor Foundation and by internal funds from the University of Alabama at Birmingham Medical Genomics Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived and coordinated by A.P. and L.M.M. Patient phenotyping was performed by L.A., D.B.-V., A.B., J.O.B., A.L.B., M.S.D., H.F., K.G., S.H., C.K., C.L., R.N., K.A.R., J.M.S., P.S., J.A.W., A.Z. and B.R.K. Clinical data were collected by A.R.G. Design of the target enrichment library was performed by A.P. Paired-end next-generation sequencing was performed by M.R.C. and D.K.C. Detection of variants, filtering and annotation were performed by A.P., P.M., D.K.C. and L.M.M. NF2 and SMARCB1 mutation analyses and loss of heterozygosity studies were performed by A.B.P. Multiplex ligation-dependent probe amplification analyses were performed by C.F. LZTR1 mutation analyses and confirmatory tests were performed by J.X. and A.B.P. Prediction of protein structure and effects of missense mutations was performed by Y.F.L. and L.M.M. Analysis of mutational databases and statistical analyses were performed by J.X., Y.F.L. and L.M.M. The manuscript was written by A.P., J.X., A.B.P., Y.F.L. and L.M.M. All authors contributed to the manuscript.

Corresponding author

Correspondence to Ludwine M Messiaen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Tables 1 and 2 (PDF 10688 kb)

Supplementary Tables 3–7

Supplementary Tables 3–7 (XLSX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piotrowski, A., Xie, J., Liu, Y. et al. Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas. Nat Genet 46, 182–187 (2014). https://doi.org/10.1038/ng.2855

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2855

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer