Skip to main content
Log in

Design and Control Optimization of Microclimate Liquid Cooling Systems Underneath Protective Clothing

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

The use of protective clothing, whether in space suits, hazardous waste disposal, or sporting equipment, generally increases the risk of heat stress and hyperthermia by impairing the capacity for evaporative heat exchange from the body to the environment. To date the most efficient method of microclimate cooling underneath protective clothing has been via conductive heat exchange from circulating cooling fluid next to the skin. In order to make the use of liquid microclimate cooling systems (LQMCSs) as portable and practical as possible, the physiological and biomedical engineering design goals should be towards maximizing the efficiency of cooling to maintain thermal comfort/neutrality with the least cooling possible to minimize coolant and power requirements. Meeting these conditions is an extremely complex task that requires designing for a plethora of different factors. The optimal fitting of the LQMCSs, along with placement and design of tubing and control of cooling, appear to be key avenues towards maximizing efficiency of heat exchange. We review the history and major design constraints of LQMCSs, the basic principles of human thermoregulation underneath protective clothing, and explore potential areas of research into tubing/fabric technology, coolant distribution, and control optimization that may enhance the efficiency of LQMCSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIGURE 1.
FIGURE 2.

Similar content being viewed by others

REFERENCES

  1. Abramov, I. P. The experience in operation and improving the Orlan-type space suits. Acta Astronaut 36:1–12, 1995.

    PubMed  CAS  Google Scholar 

  2. Abramov, I. P., G. M. Glazov, and V. I. Svertshek. Long-term operation of “Orlan” space suits in the “Mir” orbiting station: experience obtained and its application. Acta Astronaut 51:133–143, 2002.

    PubMed  CAS  Google Scholar 

  3. Abramov, I. P., S. S. Pozdnyakov, G. I. Severin, and A. Y. Stoklitsky. Main problems of the Russian Orlan-M space suit utilization for EVAs on the ISS. Acta Astronaut 48:265–273, 2001.

    PubMed  CAS  Google Scholar 

  4. Allan, J. R. The liquid conditioned suit. A physiological assessment. FPRC Contract Report No. 234. Farnborough, Hants: RAF Institute of Aviation Medicine, 1966, pp. 1–8.

  5. Allan, J. R. The effects of high ambient humidity on the performance of the liquid conditioned suit. FPRC Contract Report No. 1265. Farnborough, Hants: RAF Institute of Aviation Medicine, Publication FPRC-1265, 1967, pp. 1–12.

  6. Allan, J. R. The development of personal conditioning in military aviation. Ergonomics 31:1031–1040, 1988.

    PubMed  CAS  Google Scholar 

  7. Allan, J. R., M. F. Allnutt, M. Beeny, R. de G. Hanson, J. Morrison, P. W. J. Needham, D. G. Robertson, and B. Short. A laboratory comparison of three methods of personal conditioning. FPRC Contract Report No 1307. Farnborough, Hants: RAF Institute of Aviation Medicine and Royal Aircraft Establishment, Publication FPRC-1307, 1971, pp. 1–40.

  8. Allan, J. R., D. H. Elliott, and P. A. Hayes. The thermal performance of partial coverage wet suits. Aviat. Space Environ. Med. 57:1056–1060, 1986.

    PubMed  CAS  Google Scholar 

  9. Allan, J. R., M. H. Harrison, and C. Higenbottam. An automatic thermal data recording system for use in high performance aircraft [proceedings]. J. Physiol. 272:5P–6P, 1977.

    PubMed  CAS  Google Scholar 

  10. Amos, D., and R. Hansen. The physiological strain induced by a new low burden chemical protective ensemble. Aviat. Space Environ. Med. 68:126–131, 1997.

    PubMed  CAS  Google Scholar 

  11. Amos, D., R. Hansen, W. M. Lau, and J. T. Michalski. Physiological and cognitive performance of soldiers conducting routine patrol and reconnaissance operations in the tropics. Mil. Med. 165:961–966, 2000.

    PubMed  CAS  Google Scholar 

  12. Aoyagi, Y., T. M. McLellan, and R. J. Shephard. Effects of training and acclimation on heat tolerance in exercising men wearing protective clothing. Eur. J. Appl. Physiol. Occup. Physiol. 68:234–245, 1994.

    PubMed  CAS  Google Scholar 

  13. Ashdown, S. P., S. Loker, K. Schoenfelder, and L. Lyman-Clarke. Using 3D scans for fit analysis. J. Text. Apparel, Technol. Manage. 4:1–12, 2004.

    Google Scholar 

  14. Barer, A. S. EVA medical problems. Acta Astronaut 23:187–193, 1991.

    PubMed  CAS  Google Scholar 

  15. Billingham, J. Heat exchange between man and his environment on the surface of the moon. J. Br. Interplanet. Soc. 17:297–300, 1959.

    Google Scholar 

  16. Blair, D. A., W. E. Glover, and I. C. Roddie. Cutaneous vasomotor nerves to the head and trunk. J. Appl. Physiol. 16:119–122, 1961.

    Google Scholar 

  17. Bomalaski, S. H., Y. T. Chen, and S. H. Constable. Continuous and intermittent personal microclimate cooling strategies. Aviat. Space Environ. Med. 66:745–750, 1995.

    PubMed  CAS  Google Scholar 

  18. Burton, D. R. Performance of water conditioned suits. Aerospace Med. 37:500–504, 1966.

    PubMed  CAS  Google Scholar 

  19. Burton, D. R. Engineering aspects of personal conditioning. In: Proceedings of the Symposium on Individual Cooling, Kansas State University, Manhattan, KS, pp. 33-49, 1969.

  20. Burton, D. R., and L. Collier. The development of water conditioned suits. Farnborough, Hants: Royal Aircraft Establishment, Note No. M.E. 400, 1964.

  21. Burton, D. R., and L. Collier. The performance of water conditioned suits. Technical Report No. 65004. UK: Royal Aircraft Establishment, 1965.

  22. Cadarette, B. S., L. Levine, M. A. Kolka, G. N. Proulx, M. M. Correa, and M. N. Sawka. Heat strain reduction by ice-based and vapor compression liquid cooling systems with a toxic agent protective uniform. Aviat. Space Environ. Med. 73:665–672, 2002.

    PubMed  Google Scholar 

  23. Chambers, A. B. Controlling thermal comfort in EVA. Space suit. ASHRAE J. 12:33–38, 1970.

    Google Scholar 

  24. Cheung, S. S., and A. Robinson. The influence of upper-body pre-cooling on repeated sprint performance in moderate ambient temperatures. J. Sports Sci. 22:605–612, 2004.

    PubMed  Google Scholar 

  25. Cheung, S. S., and T. M. McLellan. Influence of hydration status and fluid replacement on heat tolerance while wearing NBC protective clothing. Eur. J. Appl. Physiol. Occup. Physiol. 77:139–148, 1998.

    PubMed  CAS  Google Scholar 

  26. Cheung, S. S., and T. M. McLellan. Influence of short-term aerobic training and hydration status on tolerance during uncompensable heat stress. Eur. J. Appl. Physiol. Occup. Physiol. 78:50–58, 1998.

    PubMed  CAS  Google Scholar 

  27. Cheung, S. S., T. M. McLellan, and S. Tenaglia. The thermophysiology of uncompensable heat stress. Physiological manipulations and individual characteristics. Sports Med. 29:329–359, 2000.

    PubMed  CAS  Google Scholar 

  28. Cheung, S. S., and I. B. Mekjavic. Human temperature regulation during subanesthetic levels of nitrous oxide-induced narcosis. J. Appl. Physiol. 78:2301–2308, 1995.

    PubMed  CAS  Google Scholar 

  29. Cheung, S. S., and G. G. Sleivert. Multiple triggers for hyperthermic fatigue and exhaustion. Exercise Sport Sci. Rev. 32:100–106, 2004.

    Google Scholar 

  30. Cheuvront, S. N., M. A. Kolka, B. S. Cadarette, S. J. Montain, and M. N. Sawka. Efficacy of intermittent, regional microclimate cooling. J. Appl. Physiol. 94:1841–1848, 2003.

    PubMed  Google Scholar 

  31. Chun-Yoon, J., and C. R. Jasper. Garment-sizing systems: An international comparison. Int. J. Clothing Sci. Technol. 5:28–37, 1993.

    Google Scholar 

  32. Cohen, J. B., J. R. Allan, and P. J. Sowood. Effect of head or neck cooling used with a liquid-conditioned vest during simulated aircraft sorties. Aviat. Space Environ. Med. 60:315–320, 1989.

    PubMed  CAS  Google Scholar 

  33. Constable, S. H., P. A. Bishop, S. A. Nunneley, and T. Chen. Intermittent microclimate cooling during rest increases work capacity and reduces heat stress. Ergonomics 37:277–285, 1994.

    PubMed  CAS  Google Scholar 

  34. Cotter, J. D., and N. A. Taylor. The distribution of cutaneous sudomotor and alliesthesial thermosensitivity in mildly heat-stressed humans: An open-loop approach. J. Physiol. 565:335–345, 2005.

    PubMed  CAS  Google Scholar 

  35. Cowell, S. A., J. M. Stocks, D. G. Evans, S. R. Simonson, and J. E. Greenleaf. The exercise and environmental physiology of extravehicular activity. Aviat. Space Environ. Med. 73:54–67, 2002.

    PubMed  Google Scholar 

  36. Crocker, J. F., P. Webb, and D. C. Jennings. Metabolic heat balances in working men wearing liquid cooled sealed clothing. AIAA Publication CP-10, 1964, pp. 111–117.

  37. Crockford, G. W. Wearer related performance standards for conditioned clothing. Ergonomics 31:1093–1101, 1988.

    PubMed  CAS  Google Scholar 

  38. Davis, S., R. Pargas, and N. Staples. Military garment size prediction. Int. J. Clothing Sci. Technol. 7:48–49, 1996.

    Google Scholar 

  39. De Rossi, D., F. Carpi, F. Lorussi, A. Mazzoldi, R. Paradiso, E. P. Scilingo, and A. Tognetti. Electroactive fabrics and wearable biomonitoring devices. AUTEX Res. J. 3:180–185, 2003.

    Google Scholar 

  40. Desruelle, A. V., and V. Candas. Thermoregulatory effects of three different types of head cooling in humans during a mild hyperthermia. Eur. J. Appl. Physiol. 81:33–39, 2000.

    PubMed  CAS  Google Scholar 

  41. Dunne, L. E., S. P. Ashdown, and B. Smyth. Expanding garment functionality through embedded electronic technology. J. Text. Apparel Technol. Manage. 4:1–11, 2005.

    Google Scholar 

  42. Edwards, R. J., M. H. Harrison, and K. M. Paine. Evaluation of the liquid conditioned coverall during simulated cockpit standby in the heat. Royal Air Force Institute of Aviation Aircrew Equipment Group, Report No. 400, 1976.

  43. Epstein, Y., and E. Sohar. Fluid balance in hot climates: Sweating, water intake, and prevention of dehydration. Public Health Rev. 13:115–137, 1985.

    PubMed  CAS  Google Scholar 

  44. Fox, R. H., R. Goldsmith, and D. J. Kidd. Cutaneous vasomotor control in the human head, neck and upper chest. J. Physiol. 161:298–312, 1962.

    PubMed  CAS  Google Scholar 

  45. Frim, J. Head cooling is desirable but not essential for preventing heat strain in pilots. Aviat. Space Environ. Med. 60:1056–1062, 1989.

    PubMed  CAS  Google Scholar 

  46. Garwood, D. R. Air-sources, supply and cooling. Ergonomics 31:1015–1023, 1988.

    PubMed  CAS  Google Scholar 

  47. Gold, A. J., and A. Zornitzer. Effect of partial body cooling on man exercising in a hot, dry environment. Aerospace Med. 39:944–946, 1968.

    PubMed  CAS  Google Scholar 

  48. Harrison, M. H., and A. J. Belyavin. Operational characteristics of liquid-conditioned suits. Aviat. Space Environ. Med. 49:994–1003, 1978.

    PubMed  CAS  Google Scholar 

  49. Harrison, M. H., R. J. Edwards, L. A. Cochrane, and M. J. Graveney. Blood volume and protein responses to skin heating and cooling in resting subjects. J. Appl. Physiol. 54:515–523, 1983.

    PubMed  CAS  Google Scholar 

  50. Harrison, M. H., and T. M. Gibson. The history of the I.A.M.: Protecting against the elements. Royal Air Force Institute of Aviation Medicine, Report No. R620, 1982.

  51. Hatlelid, C. Fight Evaluation of Simple Liquid Transport Cooling System for Aircrew Members. Ohio: Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, 1966.

  52. Havenith, G. Heat balance when wearing protective clothing. Ann. Occup. Hyg. 43:289–296, 1999.

    PubMed  CAS  Google Scholar 

  53. Havenith, G. Interaction of clothing and thermoregulation. Exogen. Derm. 5:221–230, 2002.

    Google Scholar 

  54. Havenith, G., I. Holmer, E. A. den Hartog, and K. C. Parsons. Clothing evaporative heat resistance—Proposal for improved representation in standards and models. Ann. Occup. Hyg. 43:339–346, 1999.

    PubMed  CAS  Google Scholar 

  55. Henane, R., J. Bittel, R. Viret, and S. Morino. Thermal strain resulting from protective clothing of an armored vehicle crew in warm conditions. Aviat. Space Environ. Med. 50:599–603, 1979.

    PubMed  CAS  Google Scholar 

  56. Hertzman, A. B. Vasomotor regulation of cutaneous circulation. Physiol. Rev. 39:280–306, 1959.

    PubMed  CAS  Google Scholar 

  57. Hexamer, M., and J. Werner. Control of liquid cooling garments: Subjective versus technical control of thermal comfort. Appl. Hum. Sci. 14:271–278, 1995.

    CAS  Google Scholar 

  58. Hexamer, M., and J. Werner. Control of liquid cooling garments: Technical control of body heat storage. Appl. Hum. Sci. 15:177–185, 1996.

    CAS  Google Scholar 

  59. Hexamer, M., and J. Werner. Control of liquid cooling garments: Technical control of mean skin temperature and its adjustments to exercise. Appl. Hum. Sci. 16:237–247, 1997.

    CAS  Google Scholar 

  60. Holmer, I., H. Nilsson, G. Havenith, and K. Parsons. Clothing convective heat exchange—Proposal for improved prediction in standards and models. Ann. Occup. Hyg. 43:329–337, 1999.

    PubMed  CAS  Google Scholar 

  61. Huh, C., and W. E. Bolch. A review of US anthropometric reference data (1971–2000) with comparisons to both stylized and tomographic anatomic models. Phys. Med. Biol. 48:3411–3429, 2003.

    PubMed  CAS  Google Scholar 

  62. Jennings, D. C. Water-cooled space suit. J. Spacecraft 3:1251–1256, 1966.

    Google Scholar 

  63. Joxefonvicz, J., and M. Jozefowicz. In: Polymeric Biomaterials, edited by S. Dumitriu. New York: Marcel Dekker, 1993, pp. 349–371.

  64. Katuntsev, V. P., Y. Y. Osipov, A. S. Barer, N. K. Gnoevaya, and G. G. Tarasenkov. The main results of EVA medical support on the Mir Space Station. Acta Astronaut 54:577–583, 2004.

    PubMed  CAS  Google Scholar 

  65. Kaufman, W. C., and J. C. Pittman. A simple liquid transport cooling system for aircrewmembers. Aerospace Med. 37:1239–1243, 1966.

    Google Scholar 

  66. Keim, S. M., J. A. Guisto, and J. B. Sullivan Jr. Environmental thermal stress. Ann. Agric. Environ. Med. 9:1–15, 2002.

    PubMed  Google Scholar 

  67. Knox, F. S., III, G. A. Nagel, and B. E. Hamilton. Physiological impact of wearing aircrew chemical defense protective ensembles while flying the UH-1H during hot weather. Fort Rucker, AL: US Army Aeromedical Research Laboratory: USAARL Report No. 83-4, 1982.

  68. Kobrick, J. L., R. F. Johnson, and D. J. McMenemy. Effects of nerve agent antidote and heat exposure on soldier performance in the BDU and MOPP-IV ensembles. Mil. Med. 155:159–162, 1990.

    PubMed  CAS  Google Scholar 

  69. Koscheyev, V. S., A. Coca, G. R. Leon, and M. J. Dancisak. Individual thermal profiles as a basis for comfort improvement in space and other environments. Aviat. Space Environ. Med. 73:1195–1202, 2002.

    PubMed  CAS  Google Scholar 

  70. Koscheyev, V. S., M. J. Dancisak, and G. R. Leon. Approaches to monitoring thermal status in humans under nonuniform heating/cooling on the body surface. In: Proceedings of the International Thermal Physiology Symposium. Wollongong, Australia: Australian Physiological and Pharmacological Society, 2001, p. 84P.

  71. Koscheyev, V. S., G. R. Leon, A. Coca, and N. List. Enhancing circulation to lower limbs during head-down tilt by warming upper body and thighs. Aviat. Space Environ. Med. 75:596–602, 2004.

    PubMed  Google Scholar 

  72. Koscheyev, V. S., G. R. Leon, A. Hubel, E. D. Nelson, and D. Tranchida. Thermoregulation and heat exchange in a nonuniform thermal environment during simulated extended EVA. Extravehicular activities. Aviat. Space Environ. Med. 71:579–585, 2000.

    PubMed  CAS  Google Scholar 

  73. Ku, Y. T., L. D. Montgomery, and B. W. Webbon. Hemodynamic and thermal responses to head and neck cooling in men and women. Am. J. Phys. Med. Rehabil. 75:443–450, 1996.

    PubMed  CAS  Google Scholar 

  74. Kuznetz, L. H. Automatic control of human thermal comfort by a liquid-cooled garment. J. Biomech. Eng. 102:155–161, 1980.

    Article  PubMed  CAS  Google Scholar 

  75. Kwon, O. K., A. H. Kwon, M. Kato, C. Hayashi, and H. Tokura. The effects of local cooling on thermophysiological response in participants wearing dust-free garments. Int. J. Occup. Saf . Ergon. 4:57–67, 1998.

    PubMed  Google Scholar 

  76. Lind, E. J., S. Jayaraman, S. Park, R. Rajamanickam, R. Eisler, G. Burghart, and T. McKee. A Sensate Liner for personnel monitoring applications. Acta Astronaut 42:3–9, 1998.

    PubMed  CAS  Google Scholar 

  77. Loker, S., S. P. Ashdown, and K. Schoenfelder. Size-specific analysis of body scan data to improve apparel fit. J. Text. Apparel Technol. Manage. 4:1–15, 2005.

    Google Scholar 

  78. London, R. C. A review of work in the United Kingdom on water cooled suits. Royal Aircraft Establishment, Technical Memo EP418, 1969.

  79. Mairiaux, P., W. Nullens, R. Fesler, L. Brasseur, and J. M. Detry. Evaluation of the effects of cooling clothes on the adaptation to prolonged exertion in high temperatures by miners. Rev. Inst. Hyg. Mines. (Hasselt) 32:99–122, 1977.

    CAS  Google Scholar 

  80. McLellan, T. M. Work performance at 40 degrees C with Canadian Forces biological and chemical protective clothing. Aviat. Space Environ. Med. 64:1094–1100, 1993.

    PubMed  CAS  Google Scholar 

  81. Mekjavic, I. B., M. J. Tipton, and O. Eiken. Thermal considerations in diving. In: Bennett and Elliot's Physiology of Medicine of Diving, edited by A. O. Brubakk and T. S. Neuman. Toronto: Saunders, 2003.

    Google Scholar 

  82. Mission Operations Directorate. Service Module Orlan Operations: Operations Division, June 10, 2000.

  83. Moller, P., R. Loewens, I. P. Abramov, and E. A. Albats. EVA Suit 2000: A joint European/Russian space suit design. Acta Astronaut 36:53–63, 1995.

    PubMed  CAS  Google Scholar 

  84. Morrison, S., G. G. Sleivert, and S. S. Cheung. Passive hyperthermia reduces voluntary activation and isometric force production. Eur. J. Appl. Physiol. 91:729–736, 2004.

    PubMed  Google Scholar 

  85. Murphy, M. M., J. Patton, R. Mello, T. Bidwell, and M. Harp. Energy cost of physical task performance in men and women wearing chemical protective clothing. Aviat. Space Environ. Med. 72:25–31, 2001.

    PubMed  CAS  Google Scholar 

  86. Muza, S. R., N. A. Pimental, H. M. Cosimini, and M. N. Sawka. Portable, ambient air microclimate cooling in simulated desert and tropic conditions. Aviat. Space Environ. Med. 59:553–558, 1988.

    PubMed  CAS  Google Scholar 

  87. Nag, P. K., C. K. Pradhan, A. Nag, S. P. Ashtekar, and H. Desai. Efficacy of a water-cooled garment for auxiliary body cooling in heat. Ergonomics 41:179–187, 1998.

    PubMed  CAS  Google Scholar 

  88. Nam, J., D. H. Branson, H. Cao, B. Jin, S. Peksoz, C. Farr, and S. P. Ashdown. Fit analysis of liquid cooled vest protopypes usind 3D body scanning technology. J. Text. Apparel Technol. Manage. 4:1–13, 2005.

    Google Scholar 

  89. Novak, L. Our experience in the evaluation of the thermal comfort during the space flight and in the simulated space environment. Acta Astronaut 23:179–186, 1991.

    PubMed  CAS  Google Scholar 

  90. Nunneley, S. A. Water cooled garments: A review. Space Life Sci. 2:335–360, 1970.

    PubMed  CAS  Google Scholar 

  91. Nunneley, S. A., D. A. Diesel, T. J. Byrne, and Y. T. Chen. Recent experiments with personal cooling for aircrews. In: Proceedings of the International Conference on Enviromental Ergonomics, San Diego, CA, 1998, pp. 247–250.

  92. Nunneley, S. A., D. C. Reader, and R. J. Maldonado. Head-temperature effects on physiology, comfort, and performance during hyperthermia. Aviat. Space Environ. Med. 53:623–628, 1982.

    PubMed  CAS  Google Scholar 

  93. Nunneley, S. A., R. F. Stribley, and J. R. Allan. Heat stress in front and rear cockpits of F-4 aircraft. Aviat. Space Environ. Med. 52:287–290, 1981.

    PubMed  CAS  Google Scholar 

  94. Nunneley, S. A., S. J. Troutman Jr., and P. Webb. Head cooling in work and heat stress. Aerospace Med. 42:64–68, 1971.

    PubMed  CAS  Google Scholar 

  95. Nyberg, K. L., K. R. Diller, and E. H. Wissler. Automatic control of thermal neutrality for space suit applications using a liquid cooling garment. Aviat. Space Environ. Med. 71:904–913, 2000.

    PubMed  CAS  Google Scholar 

  96. Nyberg, K. L., K. R. Diller, and E. H. Wissler. Model of human/liquid cooling garment interaction for space suit automatic thermal control. J. Biomech. Eng. 123:114–120, 2001.

    PubMed  CAS  Google Scholar 

  97. Parsons, K. C. Protective clothing: Heat exchange and physiological objectives. Ergonomics 31:991–1007, 1988.

    PubMed  CAS  Google Scholar 

  98. Perez, S. A., J. B. Charles, G. W. Fortner, V. Hurst IV, and J. V. Meck. Cardiovascular effects of anti-G suit and cooling garment during space shuttle re-entry and landing. Aviat. Space Environ. Med. 74:753–757, 2003.

    PubMed  Google Scholar 

  99. Proctor, T. D. Conditioned clothing: The needs of industry and the wearer. Ergonomics 31:987–990, 1988.

    PubMed  CAS  Google Scholar 

  100. Reardon, M., B. Fraser, and J. Omer. Physiological effects of thermal stress on aviators flying a UH-60 helicopter simulator. Mil. Med. 163:298–303, 1998.

    PubMed  CAS  Google Scholar 

  101. Richardson, G., J. B. Cohen, D. C. McPhate, and P. A. Hayes. A personal conditioning system based on a liquid-conditioned vest and a thermoelectric supply system. Ergonomics 31:1041–1047, 1988.

    PubMed  CAS  Google Scholar 

  102. Ross, I., and R. P. Clark. The ergonomics of ventilated operating theatre clothing. Ergonomics 31:1103–1113, 1988.

    PubMed  CAS  Google Scholar 

  103. Schutte, P. C., C. de Klerk, and J. Matesa. Body-cooling systems: Safety in Mines Research Advisory Committee, CSIR Mining Technology, 2002.

  104. Schutte, P. C., G. G. Rogers, C. H. van Graan, and N. B. Strydom. Heat acclimatization by a method utilizing microclimate cooling. Aviat. Space Environ. Med. 49:710–714, 1978.

    PubMed  CAS  Google Scholar 

  105. Shapiro, Y., K. B. Pandolf, M. N. Sawka, M. M. Toner, F. R. Winsmann, and R. F. Goldman. Auxiliary cooling: Comparison of air-cooled vs. water-cooled vests in hot-dry and hot-wet environments. Aviat. Space Environ. Med. 53:785–789, 1982.

    PubMed  CAS  Google Scholar 

  106. Shitzer, A., and A. B. Chambers. Comparative study of patches for liquid cooled garments. J. Spacecraft Rockets 10:541–544, 1973.

    Google Scholar 

  107. Shitzer, A., J. C. Chato, and B. A. Hertig. Thermal protective garment using independent regional control of coolant temperature. Aerospace Med. 44:49–59, 1973.

    PubMed  CAS  Google Scholar 

  108. Shvartz, E. Effect of a cooling hood on physiological responses to work in a hot environment. J. Appl. Physiol. 29:36–39, 1970.

    PubMed  CAS  Google Scholar 

  109. Shvartz, E. Efficiency and effectiveness of different water cooled suits—A review. Aerospace Med. 43:488–491, 1972.

    PubMed  CAS  Google Scholar 

  110. Shvartz, E. Effect of neck versus chest cooling on responses to work in heat. J. Appl. Physiol. 40:668–672, 1976.

    PubMed  CAS  Google Scholar 

  111. Shvartz, E., M. Aldjem, J. Ben-Mordechai, and Y. Shapiro. Objective approach to a design of a whole-body, water-cooled suit. Aerospace Med. 45:711–715, 1974.

    PubMed  CAS  Google Scholar 

  112. Shvartz, E., and D. Benor. Total body cooling in warm environments. J. Appl. Physiol. 31:24–27, 1971.

    PubMed  CAS  Google Scholar 

  113. Skoog, A. I., and I. P. Abramov. EVA 2000: A European/Russian space suit concept. Acta Astronaut 36:35–51, 1995.

    PubMed  CAS  Google Scholar 

  114. Smith, D. L., S. J. Petruzzello, J. M. Kramer, and J. E. Misner. Physiological, psychophysical, and psychological responses of firefighters to firefighting training drills. Aviat. Space Environ. Med. 67:1063–1068, 1996.

    PubMed  CAS  Google Scholar 

  115. Speckman, K. L., J. R. Allan, M. N. Sawka, A. J. Young, S. R. Muza, and K. B. Pandolf. A review: Microclimate cooling of protective overgarments in the heat. USARIEM Report, 1-64. Natick, MA: US Army Res. Environ. Med., 1988.

  116. Starr, J. B. Fluidic temperature control for liquid-cooled space suits: Portable Life Support Systems, NASA-SP-234, 1970, pp. 179–189.

  117. Starr, J. B., and G. L. Merrill. Fluidic temperature control for liquid-cooled flight suits: NADC AC-6818. Johnsville, PA: Naval Air Development Center, 1968.

    Google Scholar 

  118. Tanaka, M., G. R. Brisson, and M. A. Volle. Body temperatures in relation to heart rate for workers wearing impermeable clothing in a hot environment. Am. Ind. Hyg. Assoc. J. 39:885–890, 1978.

    PubMed  CAS  Google Scholar 

  119. Teitlebaum, A., and R. F. Goldman. Increased energy cost with multiple clothing layers. J. Appl. Physiol. 32:743–744, 1972.

    PubMed  CAS  Google Scholar 

  120. Thornley, L. J., S. S. Cheung, and G. G. Sleivert. Responsiveness of thermal sensors to nonuniform thermal environments and exercise. Aviat. Space Environ. Med. 74:1135–1141, 2003.

    PubMed  Google Scholar 

  121. Tikuisis, P., T. M. McLellan, and G. Selkirk. Perceptual versus physiological heat strain during exercise-heat stress. Med. Sci. Sports Exercise 34:1454–1461, 2002.

    Google Scholar 

  122. Tolyarenko, N. Personal communication with Flouris, A. D. Vancouver, BC, Canada, July 4, 2005.

  123. Troutman, S. J., Jr. Automatic control of water cooling. Paper presented at the Symposium on Individual Cooling. Kansas: Kansas State University, pp. 262–280, 1969.

  124. Troutman, S. J., Jr., and P. Webb. Automatic control of water cooled suits from differential temperature measurements: Final report on contract NAS 12-682 for NASA Electronics Research Center, 1969.

  125. Troutman, S. J., Jr., and P. Webb. Automatic controllers for the Apollo LCG: Final report on contract NASA-9778 for NASA Manned Spacecraft Center, 1970.

  126. United Nations. Report of the United Nations Conference on Environment and Development. Rio de Janeiro, 1992.

  127. Vallerand, A. L., R. D. Michas, J. Frim, and K. N. Ackles. Heat balance of subjects wearing protective clothing with a liquid- or air-cooled vest. Aviat. Space Environ. Med. 62:383–391, 1991.

    PubMed  CAS  Google Scholar 

  128. van Rensburg, A. J., D. Mitchell, W. H. van der Walt, and N. B. Strydom. Physiological reactions of men using microclimate cooling in hot humid environments. Br. J. Ind. Med. 29:387–393, 1972.

    PubMed  CAS  Google Scholar 

  129. Veghte, J. H., and P. Webb. Body cooling and response to heat. 1961. Wilderness Environ. Med. 12:35–38, 2001.

    PubMed  CAS  Google Scholar 

  130. Webb, P. Automatic cooling: Strategies, designs, and evaluations. Portable life systems. Washington, DC: NASA report SP-234, 1970, pp. 159–177.

  131. Webb, P. Measuring the physiological effects of cooling. Hum. Factors 13:65–78, 1971.

    PubMed  CAS  Google Scholar 

  132. Webb, P., and J. A. Annis. Bio-thermal responses to varied work programs in men kept thermally neutral by water cooled clothing. NASA CR-739. NASA Contract Rep. NASA CR, 1–65, 1966.

  133. Webb, P., and J. F. Annis. Cooling required to suppress sweating during work. J. Appl. Physiol. 25:489–493, 1968.

    PubMed  CAS  Google Scholar 

  134. Webb, P., J. F. Annis, and S. J. Troutman Jr. Automatic control of water cooling in space suits. Contract Rep. NASA CR-1085. NASA Contract Rep NASA CR, 1–84, 1968.

  135. Webb, P., F. J. Nagle, and D. M. Wanta. Heat regulation during exercise with controlled cooling. Eur. J. Appl. Physiol. Occup. Physiol. 62:193–197, 1991.

    PubMed  CAS  Google Scholar 

  136. Webb, P., S. J. Troutman Jr., and J. F. Annis. Automatic cooling in water cooled space suits. Aerospace Med. 41:269–277, 1970.

    PubMed  CAS  Google Scholar 

  137. Werner, J. Thermoregulatory models. Recent research, current applications and future development. Scand. J. Work Environ. Health. 15(Suppl. 1):34–46, 1989.

    PubMed  Google Scholar 

  138. Werner, J., M. Buse, and A. Foegen. Lumped versus distributed thermoregulatory control: Results from a three-dimensional dynamic model. Biol. Cybernetics 62:63–73, 1989.

    CAS  Google Scholar 

  139. Werner, J., and P. Webb. A six-cylinder model of human thermoregulation for general use on personal computers. Ann. Physiol. Anthropol. 12:123–134, 1993.

    PubMed  CAS  Google Scholar 

  140. WHO. Global strategy on occupational health for all: The way to health at work. Geneva: World Health Organization, 1995.

    Google Scholar 

  141. Williams, B. A., and A. Shitzer. Modular liquid-cooled helmet liner for thermal comfort. Aerospace Med. 45:1030–1036, 1974.

    PubMed  CAS  Google Scholar 

  142. Wilson, E. Advances in representing the degradative effects of chemical and biological weapons in conflict. In: Proceedings of the 15th International Symposium on Military Operational Research, Operational Research Society, Swindon, UK, 1998.

  143. Xu, X., L. G. Berglund, S. N. Cheuvront, T. L. Endrusick, and M. A. Kolka. Model of human thermoregulation for intermittent regional cooling. Aviat. Space Environ. Med. 75:1065–1069, 2004.

    PubMed  Google Scholar 

  144. Xu, X., M. Hexamer, and J. Werner. Multi-loop control of liquid cooling garment systems. Ergonomics 42:282–298, 1999.

    PubMed  CAS  Google Scholar 

  145. Xu, X., and J. Werner. A dynamic model of the human/clothing/environment-system. Appl. Hum. Sci. 16:61–75, 1997.

    CAS  Google Scholar 

  146. Young, A. J., M. N. Sawka, Y. Epstein, B. Decristofano, and K. B. Pandolf. Cooling different body surfaces during upper and lower body exercise. J. Appl. Physiol. 63:1218–1223, 1987.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Cheung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flouris, A.D., Cheung, S.S. Design and Control Optimization of Microclimate Liquid Cooling Systems Underneath Protective Clothing. Ann Biomed Eng 34, 359–372 (2006). https://doi.org/10.1007/s10439-005-9061-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9061-9

Keywords

Navigation