Skip to main content

Sites and Mechanisms for the Hypocholesterolemic Actions of Soluble Dietary Fiber Sources

  • Chapter
Book cover Dietary Fiber in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 427))

Abstract

Earlier research summarized in previous Vahouny Symposia (1–4) is the foundation for the generally accepted concept that soluble, but not insoluble, dietary fibers modulate upper gastrointestinal physiology. This concept was lucidly illustrated by Jenkins et al (5) at an earlier conference. In his diagram, more digesta is in the stomach and is distributed over a larger portion of the small intestine when more fiber is consumed. Implicit in this diagram is that not only is digestion slower but so is absorption, which results in a more physiological load of nutrients entering the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vahouny GV, Kritchevsky D, eds. Dietary Fiber in Health and Disease. Plenum Press, New York. 1982:1–330.

    Google Scholar 

  2. Vahouny GV, Kritchevsky D, eds. Dietary Fiber. Basic and Clinical Aspects. Plenum Press, New York. 1986:1–566.

    Google Scholar 

  3. Kritchevsky D, Bonfield C, Anderson JW, eds. Dietary Fiber. Chemistry, Physiology, and Health Effects. Plenum Press, New York, 1990:1–499.

    Google Scholar 

  4. Kritchevsky D, Bonfield C, eds. Dietary Fiber in Health and Disease. Eagan Press, St. Paul, MN. 1995:1–486.

    Google Scholar 

  5. Jenkins DJA, Wolever TMS, Jenkins AL, Taylor RH. Dietary fiber, gastrointestinal, endocrine, and metabolic effects: lente carbohydrate. In: Dietary Fiber, Basic and Clinical Aspects. Vahouny GV, Kritchevsky D, eds. Plenum Press, New York. 1986:69–80.

    Google Scholar 

  6. Gallaher DD, Hassel CA, Lee K-J. Relationships between viscosity of hydroxypropyl methylcellulose and plasma cholesterol in hamsters. J Nutr. 1993;123:1732–1738.

    CAS  Google Scholar 

  7. Braun WH, Ramsey JC, Gehring PJ. The lack of significant absorption of methylcellulose, viscosity 330 cP, from the gastrointestinal tract following single and multiple oral doses to the rat. Food Cosmet Toxicol. 1974;12:373–376.

    Article  CAS  Google Scholar 

  8. Carr TP, Gallaher DD, Yang C-H, Hassel CA. Increased intestinal contents viscosity reduces cholesterol absorption efficiency in hamsters fed hydroxypropyl methylcellulose. J Nutr. 1996;126:1463–1469.

    CAS  Google Scholar 

  9. Topping DL, Oakenfull D, Trimble RP, Illman RJ. A viscous fibre (methylcellulose) lowers blood glucose and plasma triacylglycerols and increases liver glycogen independently of volatile fatty acid production in the rat. Br J Nutr. 1988;59:21–30.

    Article  CAS  Google Scholar 

  10. Story JA, Tepper SA, Kritchevsky D. Influence of synthetic conjugates of cholic acid on cholesterolemia in rats. J Nutr. 1974;104:11 85–1188.

    Google Scholar 

  11. Fleming SE. Influence of dietary fiber on the production, absorption, or excretion of short chain fatty acids in humans. In: Spiller GA, ed. Dietary Fiber in Human Nutrition, 2nd ed. CRC Press, Boca Raton, FL. 1993:387–412.

    Google Scholar 

  12. Anderson SA, Fisher KD, Talbot JM, eds. Evaluation of the Health Aspects of Using Partially Hydrolyzed Guar Gum as a Food Ingredient. Federation of American Societies for Experimental Biology, Bethesda, MD. 1993:1–61.

    Google Scholar 

  13. Lia Å,Hallmans G, Sandberg A-S, Sundberg B, Åman P, Andersson H, Oat ß-glucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy subjects. Am J Clin Nutr. 1995:62:1245–51.

    CAS  Google Scholar 

  14. Alvarez-Leite JI, Andrieux C, Ferezou J, Riotto M, Vieira EC. Evidence for the absence of participation of the microbial flora in the hypocholesterolemic effect of guar gum in gnotobiotic rats. Comp Biochem Physiol. 1994;109A:503–510.

    Article  CAS  Google Scholar 

  15. Nishimura N, Nishikawa H, Kiriyama S. Ileorectostomy or cecectomy but not colectomy abolishes the plasma cholesterol-lowering effect of dietary beet fiber in rats. J Nutr. 1993;123:1260–1269.

    CAS  Google Scholar 

  16. Marlett JA, Longacre MJ. Comparison of in vitro and in vivo measures of resistant starch in selected grain products. Cereal Chem. 1996;73:63–68.

    CAS  Google Scholar 

  17. Jackson KA, Topping DL. Prevention of coprophagy does not alter the hypocholesterolaemic effects of oat bran in the rat. Br J Nutr. 1993;70:21 1–219.

    Google Scholar 

  18. Chen W-JL, Anderson JW, Jennings D. Propionate may mediate the hypocholesterolemic effects of certain soluble plant fibers in cholesterol-fed rats. Proc Soc Exp Biol Med. 1984;175:215–218.

    CAS  Google Scholar 

  19. Wright RS, Anderson JW, Bridges SR. Propionate inhibits hepatocyte lipid synthesis. Proc Soc Exp Biol Med. 1990;195:26–29.

    CAS  Google Scholar 

  20. Nishina PM, Freedland RA. Effects of propionate on lipid biosynthesis in isolated rat hepatocytes. J Nutr. 1990;120:668–673.

    CAS  Google Scholar 

  21. Wolever TMS, Spadafora P, Eshuis H. Interaction between colonic acetate and propionate in man. Am J Clin Nutr. 1991;53:681–687.

    CAS  Google Scholar 

  22. Wolever TMS, Spadafora PJ, Cunnane SC, Pencharz PB. Propionate inhibits incorporation of colonic [1,2-13C] acetate into plasma lipids in humans. Am J Clin Nutr. 1995;61:1241–1247.

    CAS  Google Scholar 

  23. Jenkins DJA, Wolever TMS, Jenkins A, Brighenti F, Vuksan V, Rao AV, Cunnane SC, Ocana A, Corey P, Vezina C, Connelly P, Buckley G, Patten R. Specific types of colonic fermentation may raise low-densitylipoproteins-cholesterol concentrations. Am J Clin Nutr. 1991;54:141–147.

    CAS  Google Scholar 

  24. Levrat M-A, Favier M-L, Moundras C, Remesy C, Demigne C, Morand C. Role of dietary propionic acid sod bile acid excretion in the hypocholesterolemic effects of oligosaccharides in rats. J Nutr. 1994; 124:531–538.

    CAS  Google Scholar 

  25. Todesco T. Rao AV, Bosello 0, Jenkins DJA. Propionate lowers blood glucose and alters lipid metabolism in healthy subjects. Am J Clin Nutr. 1991;54:860–865.

    CAS  Google Scholar 

  26. Carroll KK. Hypercholesterolemia and atherosclerosis: effects of dietary protein. Fed Proc. 1982; 41:2792–2796.

    CAS  Google Scholar 

  27. Kritchevsky D. Protein and Atherosclerosis. J Nutr Sci Vitaminol. 1990;36(suppl):581–586.

    Article  Google Scholar 

  28. Carroll KK. Review of clinical studies on cholesterol-lowering response to soy protein. J Am Diet Assoc. 1991;91:820–827.

    CAS  Google Scholar 

  29. Anderson JW, Johnstone BM, Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med. 1995;333:276–282.

    Article  CAS  Google Scholar 

  30. Anthony MS, Clarkson TB, Weddle DL, Wolfe MS. Effects of soy protein phytoestrogens on cardiovascular risk factors in rhesus monkeys. J Nutr. 1995;125 (Suppl 35):8035–8045.

    Google Scholar 

  31. Lovati MR, West CE, Sirtori CR, Beynem AC. Dietary animal proteins and cholesterol metabolism in rabbits. Br J Nutr. 1990;64:473–485.

    Article  CAS  Google Scholar 

  32. Barnes PJ. Cereal tocopherols. In: Holas J, Kratochvil, eds. Progress in Cereal Chemistry and Technology. Proc. 7th World Cereal and Bread Congr. Elsevier, Amsterdam. 1983:1095–1100.

    Google Scholar 

  33. Qureshi AA, Qureshi A, Wright JJK, Shen Z, Kramer G, Gapor A, Chong YH, Dewitt G, Ong ASH, Peterson DM, Bradlow BA. Lowering of serum cholesterol in hypercholesterolemic humans by tocotrienols (palmvitee). Am J Clin Nutr. 1991;53:10215–10265.

    Google Scholar 

  34. Elson CE. Tropical Oils: Nutritional and Scientific issues. Crit Rev Food Sci Nutr. 1992;31:79–102.

    Article  CAS  Google Scholar 

  35. Parker RA, Pearce BC, Clark RW, Gordon DA, Wright JJK. Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem. 1993:268:11230–11238.

    CAS  Google Scholar 

  36. Qureshi AA, Bradlow BA, Brace L, Manganello J, Peterson DM, Pearce BC, Wright JJK, Gapor A, Elson CE. Response of hypercholesterolemic subjects to administration of tocotrienols. Lipids. 1995;30:1171–1177.

    Article  CAS  Google Scholar 

  37. Tan DTS, Khor HT, Low WHS, Ali A, Gapor A. Effect of a palm-oil-vitamin E concentrate on the serum and lipoprotein lipids of humans. Am J Clin Nutr. 1991;53:1027S–1031S.

    CAS  Google Scholar 

  38. Wahlqvist ML, Krivokuca-Bogetic Z, Lo CH, Hage B, Smith R, Lukito W. Differential serum responses to tocopherols and tocotrienols during vitamin E supplementation in hypercholesterolaemic individuals without change in coronary risk factors. Nutr Res. 1992;12:S181–S201.

    Article  Google Scholar 

  39. Pearce BC, Parker RA, Deason ME, Qureshi AA, Wright JJK. Hypocholesterolemic activity of synthetic and natural tocotrienols. J Med Chem. 1992;35:3595–3606.

    Article  CAS  Google Scholar 

  40. Lasztity R, Berndorfer-Kraszner E, Huszar M. On the presence and distribution of some bioactive agents in oat varieties. In: Inglett GE. Munck L, eds. Cereals for Food and Beverages. Academic Press, New York. 1980:429–445.

    Google Scholar 

  41. Peterson DM, Qureshi AA. Genotype and environment effects on tocols of barley and oats. Cereal Chem. 1993;70:157–162.

    CAS  Google Scholar 

  42. Qureshi AA, Pearce BC, Nor RM, Gapor A, Peterson DM, Elson CE. Dietary a-tocopherol attenuates the impact of y-tocotrienol on hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in chickens. J Nutr. 1996;126:389–394.

    CAS  Google Scholar 

  43. Hakkarainen RVJ, Tyopponen JT, Bengtsson SG. Changes in the content and composition of vitamin E in damp barley stored in airtight bins. J Sci Food Agric. 1983;34:1029–1034.

    Article  CAS  Google Scholar 

  44. Peterson DM. Oat tocols: concentration and stability in oat products and distribution within the kernel. Cereal Chem. 1995;72:21–24.

    CAS  Google Scholar 

  45. Peterson DM. Barley tocols: effects of milling, malting, and mashing. Cereal Chem. 1994;71:42–44.

    CAS  Google Scholar 

  46. Neuman DM, Vlahcevic ZR, Bailey ML, Hylemon PB. Regulation of bile acid synthesis. II. Effect of bile acid feeding on enzymes regulating hepatic cholesterol and bile acid synthesis in the rat. Hepatology. 1988;8:892–897.

    Article  Google Scholar 

  47. Vlahcevic ZR, Heuman DM, Hyłemon PB. Regulation of bile acid synthesis. Hepatology. 1991;13:590–600.

    Article  CAS  Google Scholar 

  48. Schwartz CC, Berman M, Vlahcevic ZR, Swell L. Мulticompartmental analysis of cholesterol metabolism in man. J Clin Invest. 1982;70:863–876.

    Article  CAS  Google Scholar 

  49. Pilch SM. Physiological Effects and Health Consequences of Dietary Fiber. Life Sciences Research Office, Federation of American Societies for Experimental Biology, Bethesda, MD. 1987:1–235.

    Google Scholar 

  50. Anderson JW, Deakins DA, Bridges SR. Soluble fiber. In: Kritchevsky D, Bonfield C, Anderson JW, eds. Dietary Fiber Chemistry, Physiology and Health Effects. New York, Plenum Press. 1990:339–363.

    Google Scholar 

  51. Shinnick FL, Mathews R, Ink S. Serum cholesterol reduction by oats and other fiber sources. Cereal Foods World. 1991;36:815–821.

    Google Scholar 

  52. Ripsin CM, Keenan JM, Jacobs DT, Elmer PJ, Welch RW, Van Horn L, Liu K. et al. Oat products and lipid-lowering: a meta-analysis. JAMA. 1992;267:3317–3325.

    Article  CAS  Google Scholar 

  53. Hopewell R, Yeater R, Ullrich I. Soluble fiber: effect on carbohydrate and lipid metabolism. Prog Food Nutr Sci. 1993;17:159–182.

    CAS  Google Scholar 

  54. Glore SR, Van-Treeck D, Knehans AW, Guild M. Soluble fiber and serum lipids: a literature review, J Am Diet Assoc. 1994;94:425–436.

    Article  CAS  Google Scholar 

  55. Gelissen IC, Brodie B, Eastwood MA. Effect of Plantago ovata (psyllium) husk and seeds on sterol metabolism: studies in normal and ileostomy subjects. Am J Clnin Nutr. 1994;59:395–400.

    CAS  Google Scholar 

  56. Lampe JW, Slavin JL, Baglien KS, Thompson WO, Duane WC, Zavoral JH. Serum lipid and fecal bile acid changes with cereal, vegetable, and sugar-beet fiber feeding. Am J Clin Nutr. 1991;53:1235–1241.

    CAS  Google Scholar 

  57. Tandon R, Axelson M, Sjöval J. Selective liquid chromatographic isolation and gas chromatographic-mass spectrometric analysis of ketonic bile acids in faeces. J chromatogr. 1984;302:1–14.

    Article  CAS  Google Scholar 

  58. Setchell KDR, Lawson AM, Tanida N, Sjöval J. General methods for the analysis of metabolic profiles of bile acids and related compounds in feces. J Lipid Res. 1985;24:1085–1100.

    Google Scholar 

  59. Zhang J-X, Hallmans G, Andersson H, Bosaeus I, Åman P, Tidehag P, Stenling R, Lundin E, Dahlgren S. Effect of oat bran on plasma cholesterol and bile acid excretion in nine subjects with ileostomies. Am J Clin Nutr. 1992;56:99–105.

    CAS  Google Scholar 

  60. Marlett JA, Hosig KB, Vollendorf NW, Shinnick FL, Haack VS, Story JA. Mechanism of serum cholesterol reduction by oat bran. Hepatology. 1994;20:1450–1457.

    Article  CAS  Google Scholar 

  61. Leiss O, von Bergmann K, Streicher U, Strotkoetler H. Effect of three different dihydroxy bile acids on intestinal cholesterol absorption in normal volunteers. Gastroenterology. 1984;87:144–149.

    CAS  Google Scholar 

  62. Stange EF, Scheibner J, Ditscheneit H. Role of primary and secondary bile acids as feedback inhibitors of bile acid synthesis in the rat in vivo. J Clin Invest. 1989;84:173–180.

    Article  CAS  Google Scholar 

  63. Hillman LC, Peters SG, Fisher CA, Pomare EW. Effects of fibre components pectin, cellulose, and lignin on bile salt metabolism and biliary lipid composition in man. Gut. 1986;27:29–36.

    Article  CAS  Google Scholar 

  64. Everson GT, Daggy BP, McKinley C, Story JA. Effects of psyllium hydrophilic mucilloid on LDL-cholesterol and bile acid synthesis in hypercholesterolemic men. J Lipid Res. 1992;33:1183–1192.

    CAS  Google Scholar 

  65. Kesaniemi YA, Tarpila S, Miettinen TA. Low vs high dietary fiber and serum biliary and fecal lipids in middle-aged men. Am J Clin Nutr. 1990:51:1007–1012.

    CAS  Google Scholar 

  66. Miettinen TA, Tarpila S. Effect of pectin on serum cholesterol, fecal bile acids and biliary lipids in normolipidemic and hyperlipidemic individuals. Clin Chim Acta. 1977;79:471–477.

    Article  CAS  Google Scholar 

  67. Miettinen TA, Tarpila S. Serum lipids and cholesterol metabolism during guar gum, plantago ovata and high fibre treatments. Clin Chim Acta. 1989;183:253–262.

    Article  CAS  Google Scholar 

  68. Marlett JA. Content and composition of dietary fiber in 117 frequently consumed foods. J Am Diet Assoc. 1992;92:175–186.

    CAS  Google Scholar 

  69. Marlett JA, Cheung T-F. Dietary fiber guidelines in the exchange lists for menu planning. Diabetes Care. 1994;17:1534–1541.

    CAS  Google Scholar 

  70. Schneeman BO, Gallaher DD. Dietary fiber. In: Brown ML, ed. Present Knowledge in Nutrition, 6th ed. International Life Sciences Institute, Nutrition Foundation, Washington, DC. 1990:80–87.

    Google Scholar 

  71. Marlett JA. Comparisons of dietary fiber and selected nutrient compositions of oat and other grain fractions. In: Wood PJ, ed. Oat Bran. American Association of Cereal Chemists, St. Paul, MN. 1993:49–82.

    Google Scholar 

  72. Cummings JH, Macfarlane GT. The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol. 1991;70:443–459.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marlett, J.A. (1997). Sites and Mechanisms for the Hypocholesterolemic Actions of Soluble Dietary Fiber Sources. In: Kritchevsky, D., Bonfield, C. (eds) Dietary Fiber in Health and Disease. Advances in Experimental Medicine and Biology, vol 427. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5967-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5967-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7735-1

  • Online ISBN: 978-1-4615-5967-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics