Appendix 2 (as supplied by the authors): Conditional prediction of future FEV $_{1}$ given

bassline FEV_{1} values from the final model

In our model, observed FEV_{1} is modeled as

$$
F E V_{t}=\beta_{0}+\beta \cdot X+\beta_{0}^{\prime} \cdot t+\beta^{\prime} \cdot X \cdot t+\beta_{0}^{\prime \prime} \cdot t^{2}+\operatorname{int} * \operatorname{sign}(t)+e
$$

Where β_{0} (intercept) and β_{0}^{\prime} (slope) are random, represented by a bivariate normal distribution whose parameters are directly estimated from the regression model,

$$
\left(\beta_{0}, \beta_{0}^{\prime}\right) \sim B V N\left(\text { mean }=\left(\overline{\beta_{0}}, \overline{\beta_{0}^{\prime}},\right), \text { covariance }=\left[\begin{array}{cc}
\operatorname{Var}\left(\beta_{0}\right) & \operatorname{Cov}\left(\beta_{0}, \beta_{0}^{\prime}\right) \\
\operatorname{Cov}\left(\beta_{0}, \beta_{0}^{\prime}\right) & \operatorname{Var}\left(\beta_{0}^{\prime}\right)
\end{array}\right]\right)
$$

Other coefficients are fixed. The int represents receiving intervention and is modeled only for follow-up $\mathrm{FEV}_{1} \mathrm{~s}$ (where $\operatorname{sign}(t)=1$), X is the set of covariates (i.e., baseline age, sex, weight, height, height squared, smoking status, O'connor slope, and interaction of baseline age and height squared), t represents time (year), and e is a normally distributed error term for the prediction.

This model connects any two FEV_{1} values among patients as having bivariate normal distributions. A follow-up FEV_{1} and baseline FEV_{1} can therefore be jointly parameterized as:
$\mu=\left[\begin{array}{l}\mu_{1} \\ \mu_{2}\end{array}\right]=\left[\overline{\beta_{0}}+\beta \cdot X+\beta^{\prime} \cdot X \cdot t+\overline{\beta_{0}^{\prime}} \cdot t+\beta_{0}^{\prime \prime} \cdot t^{2}+i n t\right]$,
$\operatorname{cov}=\left[\begin{array}{ll}\sum_{11} & \sum_{12} \\ \sum_{21} & \sum_{22}\end{array}\right]=\left[\begin{array}{cc}\operatorname{Var}\left(\beta_{0}\right)+2 \cdot t \cdot \operatorname{cov}\left(\beta_{0}, \beta_{0}^{\prime}\right)+t^{2} \cdot \operatorname{var}\left(\beta_{0}^{\prime}\right)+\operatorname{var}(e) & \operatorname{Var}\left(\beta_{0}\right)+t \cdot \operatorname{cov}\left(\beta_{0}, \beta_{0}^{\prime}\right) \\ \operatorname{Var}\left(\beta_{0}\right)+t \cdot \operatorname{cov}\left(\beta_{0}, \beta_{0}^{\prime}\right) & \operatorname{Var}\left(\beta_{0}\right)+\operatorname{var}(e)\end{array}\right]$.
Conditional on observed baseline FEV_{1} having a value of $\mathrm{Y}_{0}, \mathrm{FEV}_{\mathrm{t}}$ gets an updated normal distribution with the following parameters:
$\mu^{\prime}($ mean $)=\mu_{1}+\sum_{12} \cdot \sum_{22}^{-1} \cdot\left(\mathrm{Y}_{0}-\mu_{2}\right)$,
$v^{\prime}($ variance $)=\sum_{11}-\sum_{12} \cdot \sum_{22}^{-1} \cdot \sum_{21}$ (2)
For the incorporation of the previous history of FEV_{1}, the same line of reasoning is applied, noticing that any three FEV_{1} values for the same individual have tri-variate normal distribution and the conditional mean and variance of follow-up FEV_{1} given the baseline and previous FEV_{1} can be obtained using the same matrix equations where μ_{2}, \sum_{12}, Σ_{21}, and \sum_{22} are updated as follows:
$\mu_{2}=\left[\begin{array}{c}\overline{\beta_{0}}+\beta \cdot X \\ \overline{\beta_{0}}+\beta \cdot X+\beta^{\prime} \cdot X \cdot(-1)+\overline{\beta_{0}^{\prime}} \cdot(-1)+\beta_{0}^{\prime \prime} \cdot(-1)^{2}\end{array}\right]$,
$\sum_{12}=\left[\operatorname{Var}\left(\beta_{0}\right)+t \cdot \operatorname{cov}\left(\beta_{0}, \beta_{0}^{\prime}\right) \quad \operatorname{Var}\left(\beta_{0}\right)-\operatorname{cov}\left(\beta_{0}, \beta_{0}^{\prime}\right)+t \cdot \operatorname{cov}\left(\beta_{0}, \beta_{0}^{\prime}\right)-t \cdot \operatorname{var}\left(\beta_{0}^{\prime}\right)\right]$,
$\sum_{21}=\left[\begin{array}{c}\operatorname{Var}\left(\beta_{0}\right)+t \cdot \operatorname{cov}\left(\beta_{0}, \beta_{0}^{\prime}\right) \\ \operatorname{Var}\left(\beta_{0}\right)-\operatorname{cov}\left(\beta_{0}, \beta_{0}^{\prime}\right)+t \cdot \operatorname{cov}\left(\beta_{0}, \beta_{0}^{\prime}\right)-t \cdot \operatorname{var}\left(\beta_{0}^{\prime}\right)\end{array}\right]$,
$\sum_{22}=\left[\begin{array}{cc}\operatorname{var}\left(\beta_{0}\right)+\operatorname{var}(e) & \operatorname{var}\left(\beta_{0}\right)-\operatorname{cov}\left(\beta_{0}, \beta_{0}^{\prime}\right) \\ \operatorname{var}\left(\beta_{0}\right)-\operatorname{cov}\left(\beta_{0}, \beta_{0}^{\prime}\right) & \operatorname{Var}\left(\beta_{0}\right)-2 \cdot \operatorname{cov}\left(\beta_{0}, \beta_{0}^{\prime}\right)+\operatorname{var}\left(\beta_{0}^{\prime}\right)+\operatorname{var}(e)\end{array}\right]$.

