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Clinicians practising evidence-based medicine are familiar with 
the concepts of sensitivity and specificity, defined as the probabil-
ity of a positive test given that the person has the target condition, 
and the probability of a negative test given that the person does 
not have the condition, respectively.1 In practice, sensitivity and 
specificity are often treated as being independent from disease 
prevalence, defined as pre-test probability of disease or probabil-
ity of the target condition in the study sample. This is often con-
trasted with positive and negative predictive values or post-test 
probabilities, which are highly dependent on prevalence and pre-
test probability. Therefore, sensitivity and specificity are consid-
ered to be characteristics of the test as intrinsic accuracy meas-
ures, and independent from the characteristics of the population. 
The rationale for this assumption relates to the mathematical cal-
culation of these measures from a classic 2 × 2 diagnostic table.

However, sensitivity and specificity have been found to change 
as disease prevalence changes. Leeflang and colleagues2 provided 
4 examples of individual diagnostic studies in which sensitivity and 
specificity changed as the prevalence changed, and Li and Fine3 
showed the same in 2 meta-analyses. In a separate study, Leeflang 
and colleagues4 used data from 23 meta-analyses and evaluated 
the effects of prevalence on sensitivity and specificity using a 
bivariate random-effects model for each meta-analysis, with 
preva lence as a covariate.5,6 The results suggested that specificity 
tended to be lower with a higher prevalence, whereas sensitivity 
changes did not follow a specific pattern.4 

Overall, however, the number of studies that have evalu-
ated the association between prevalence and sensitivity and 
specificity is small, although the issue is very important. Some 
of the reported changes in sensitivity and specificity reached 
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Abstract
Background: Sensitivity and specificity 
are characteristics of a diagnostic test 
and are not expected to change as the 
prevalence of the target condition 
changes. We sought to evaluate the 
association between prevalence and 
changes in sensitivity and specificity.

Methods: We retrieved data from meta-
analyses of diagnostic test accuracy pub-
lished in the Cochrane Database of Sys-
tematic Reviews (2003–2020). We used 
mixed-effects random-intercept linear 
regression models to evaluate the associ-
ation between prevalence and logit-
transformed sensitivity and specificity. 
The model evaluated all meta-analyses 
as nested within each systematic review.

Results: We analyzed 6909 diagnostic 
test accuracy studies from 552 meta-
analyses that were included in 92 sys-
tematic reviews. For sensitivity, com-
pared with the lowest quartile of 
prevalence, the second, third and 
fourth quartiles were associated with 
significantly higher odds of identifying 
a true positive case (odds ratio [OR] 
1.17, 95% confidence interval [CI] 1.09–
1.26; OR 1.32, 95% CI 1.23–1.41; 
OR  1.47, 95% CI 1.37–1.58; respect-
ively). For specificity, compared with 
the lowest quartile of prevalence, the 
second, third and fourth quartiles were 
associated with significantly lower odds 
of identifying a true negative case 
(OR  0.74, 95% CI 0.69–0.80; OR 0.65, 

95% CI 0.60–0.70; OR 0.47, 95% CI 0.44–
0.51; respectively). Pooled regression 
coefficients from bivariate models con-
ducted within each meta-analysis 
showed that prevalence was positively 
associated with sensitivity and nega-
tively associated with specificity. Find-
ings were consistent across subgroups.

Interpretation: In this large sample 
of diagnostic studies, higher preva-
lence was associated with higher esti-
mated sensitivity and lower estimated 
specificity. Clinicians should consider 
the implications of disease preva-
lence and spectrum when interpreting 
the results from studies of diagnostic 
test accuracy.
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40 percentage points,4 which can entirely change the impact of 
the test in management of patients and can lead to more false 
positives and negatives, under- and overdiagnosis, and possi-
ble harm to patients. Therefore, we sought to evaluate the 
relationship between prevalence and sensitivity and specificity 
in a large sample of studies of diagnostic test accuracy.

Methods

We conducted a meta-epidemiological study using diagnostic 
meta-analyses published by the Cochrane Collaboration. This 
study follows the reporting guideline for meta-epidemiological 
methodology research.7

Data source and study selection
We searched all reviews flagged as diagnostic test accuracy 
reviews in the Cochrane Database of Systematic Reviews pub-
lished between January 2003 and January 2020. To be included, 
eligible meta-analyses had to report a classic 2 × 2 diagnostic 
table (i.e., true positive, false positive, false negative and true 
negative results) and include at least 4  studies. We did not 
restrict by patient population, type of diagnostic test, study loca-
tion or condition studied. We excluded diagnostic studies that 
had a case–control design, in which disease prevalence is not 
reliably estimated and may not reflect the true population dis-
ease prevalence, severity or spectrum.

Data extraction
We used the RCurl package in R to download data from the RM5 
files of the systematic reviews from the Cochrane Database of 
Systematic Reviews. We converted these to comma-separated 
values files for analyses. In addition to 2 × 2 diagnostic tables, we 
extracted author names and publication time of the original 
studies of diagnostic test accuracy, as well as the systematic 
reviews. Pairs of reviewers independently and manually 
extracted the overall risk of bias across original studies, test type, 
study setting and target condition. We used the QUADAS-2 tool in 
evaluating risk of bias.8 Reviewers also extracted whether the 
systematic reviews explicitly discussed spectrum bias or spec-
trum effect as a possible modifier of diagnostic accuracy, and if 
the reviews conducted subgroup analyses based on prevalence.

Outcome 
Our outcome of interest was the association between prevalence 
and sensitivity and specificity.

Statistical analysis
In the main analysis, we fitted 2 separate models to evaluate the 
association between prevalence and logit-transformed sensitivity 
or logit-transformed specificity. These models were 3-level, mixed-
effects, random-intercept linear regression models. Fixed effects 
included disease prevalence, categorized as quartiles based on 
the distribution within a meta-analysis (≤ 25th percentile as refer-
ence, 26th–50th percentile, 51st–75th percentile and > 75th per-
centile) or arbitrary prevalence cut-offs (< 25%, 26%–50%, 51%–
75%, > 75%), adjusting for the target condition category  

(collapsed into 5 categories based on the discipline or specialty, 
namely internal medicine, surgery, oncology, obstetrics and 
gynecology, and neurology or psychiatry), type of diagnostic 
test (pathology and cytology, blood test, imaging, physical 
examination or symptomatology, urine or cerebrospinal fluid 
test and a category of multiple test types), study setting 
(in patient, outpatient and mixed) and risk of bias (low, high and 
unclear). We included random effects for each meta-analysis 
and, then, nested within each systematic review. In a sensitivity 
analysis, we added the slope of prevalence as a random effect in 
the 3-level mixed effects model (Appendix 1, available at www.
cmaj.ca/lookup/doi/10.1503/cmaj.221802/tab-related-content).

In a secondary analysis, we applied a bivariate mixed-effects 
regression model to jointly estimate sensitivity and specificity for 
each individual meta-analysis,5 and added the estimated preva-
lence (proportion of people with the target condition in each 
study) as a continuous covariate to the model. To estimate the 
direction and strength of the association between prevalence 
and logit-transformed sensitivity and specificity, we pooled 
regression coefficients of prevalence as estimated from each 
meta-analysis using the restricted maximum likelihood random-
effects method. We conducted subgroup analyses based on cat-
egory of target condition, type of diagnostic test, study setting 
and risk of bias.

We graphed trends of logit-transformed sensitivity and speci-
ficity against prevalence using a locally weighted scatterplot 
smoothing plot. We considered a 2-tailed p value of less than 
0.05 statistically significant. We conducted all statistical analyses 
using Stata/SE, version 17.0 (StataCorp LLC). Analysis codes are 
listed in Appendix 1.

Ethics approval
Ethics approval was not needed for this analysis. 

Results

We retrieved data from 112 systematic reviews of diagnostic test 
accuracy. After exclusions, we analyzed 6909 studies of diagnos-
tic accuracy (i.e., 6909 2 × 2 tables) from 552 meta-analyses that 
were included in 92 systematic reviews (Figure 1). The individual 
diagnostic accuracy studies were published between 1961 and 
2019, with a median sample size of 157 (interquartile range [IQR] 
74–404) patients. The median number of original diagnostic 
accuracy studies within a meta-analysis was 17 (IQR 5–34) stud-
ies. Across the 552 meta-analyses, the median prevalence 
ranged from 0.07% to 94.90% (IQR 11.65%–41.15%). Only 14 
(15.2%) of the 92 systematic reviews explicitly discussed spec-
trum bias or spectrum effect as a possible modifier of diagnostic 
accuracy, and only 7 (7.6%) conducted subgroup analyses based 
on prevalence.

The association of prevalence with sensitivity and 
specificity
Figure 2 shows a positive association between sensitivity and 
prevalence, and Figure 3 shows a negative association between 
specificity and prevalence. In the main analysis, we fitted a 
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mixed-effects model with random effects for each meta-analysis 
nested within each systematic review. Table 1 shows the results 
stratified by prevalence quartiles and arbitrary prevalence cutoffs 
(25%, 50%, 75% and 100%). For sensitivity, compared with the 
lowest quartile of prevalence, the second, third and fourth quar-
tiles were associated with significantly higher odds of identifying 
a true positive case (odds ratio [OR] 1.17, 95% confidence interval 
[CI] 1.09–1.26; OR 1.32, 95% CI 1.23–1.41; OR 1.47, 95% CI 1.37–
1.58; respectively). For specificity, compared with the lowest quar-
tile of prevalence, the second, third and fourth quartiles were 
associated with significantly lower odds of identifying a true nega-
tive case (OR 0.74, 95% CI 0.69–0.80; OR 0.65, 95% CI 0.60–0.70; 
OR 0.47, 95% CI 0.44–0.51; respectively). The sensitivity analyses 
in which prevalence was modelled as a random intercept and ran-
dom slope showed similar findings (Appendix 1).

In the secondary analysis (Table 2), the pooled regression 
coefficients of prevalence from bivariate regression models 
showed the direction and strength of the association between 
prevalence and sensitivity and specificity. In this analysis, data 
from 379 individual studies failed to converge. Thus, the analy-
sis included 6530 diagnostic test accuracy studies. Among the 
6530 studies, the target condition categories included internal 

medicine (n = 2755, 42.2%), oncology (n = 1693, 25.9%), obstet-
rics and gynecology (n = 937, 14.3%), neurology or psychiatry 
(n = 578, 8.9%) and surgery (n = 567, 8.7%). The most common 
diagnostic test types were pathology and cytology (n = 1369, 
21.0%), blood tests (n = 1310, 20.1%), imaging (n = 1334, 20.4%) 
and physical examination or symptomatology (n = 1174, 18.0%). 
The tests were conducted in outpatient settings (n = 1662, 
25.5%), hospital settings (n = 929, 14.2%) and settings that were 
mixed or unclear (n = 3939, 60.3%). The risk of bias of the 
6530  original studies was high in 1818 (27.8%) studies, low in 
2841 (43.5%) studies and unclear in 1871 (28.7%) studies. The 
findings suggest a positive association with logit-transformed 
sensitivity (mean 0.92, standard error 0.10) and a negative asso-
ciation with logit-transformed specificity (mean –7.43, standard 
error 2.10). Findings were consistent across subgroups.

Interpretation

We performed a meta-epidemiological analysis of 6909 studies 
of diagnostic tests and found that sensitivity is positively asso-
ciated with prevalence, whereas specificity is negatively 
as sociated with prevalence. The direction of this change was 
also found in the secondary analyses in which a bivariate 
model incorporated prevalence as a covariate within each 
meta-analysis.

Our results are consistent with other studies that have 
attempted to evaluate whether there is an association between 
prevalence and sensitivity and specificity.2–4,9 In terms of the 
direction of the association and its pattern, other studies sug-
gested that specificity tended to be negatively associated with 
prevalence, as we observed, whereas sensitivity changes did not 
follow a specific pattern.2–4 However, these studies were far 
smaller and may have been underpowered. 

Although the definitions of sensitivity and specificity do not 
depend on prevalence, our results support the existence of such 
an association. Spectrum bias, also called spectrum effect, could 
partially explain this association.2,10,11 A test may perform better 
when used to evaluate patients with more severe disease than it 
would in patients whose disease is less obvious or less advanced. 
Hence, if investigators choose clinically inappropriate popula-
tions when studying a diagnostic test, they can introduce spec-
trum bias, which may seriously affect the results to show that the 
test performs better than it actually does. Disease status is not 
truly binary; rather, a spectrum of continuous traits defines dis-
ease severity (e.g., serum glucose and a diagnosis of diabetes).9 
Patients with test values close to the test cut-off are more likely 
to be misclassified. This misclassification is correlated with 
popu lation characteristics and prevalence.2,10,11 Therefore, preva-
lence may be a surrogate for disease severity, and thus affects 
sensitivity and specificity. Brenner and Gefeller9 evaluated the 
effect of a hypothetical continuous trait that categorizes people 
into diseased and not diseased, and found that the dependence 
of sensitivity on prevalence may be of similar magnitude to that 
of the positive predictive value. They expected that, as preva-
lence increases, sensitivity would increase and specificity would 
decrease, similar to our findings.9

Records identified through Cochrane 
Database of Systematic Reviews:

Diagnostic test accuracy studies from 
1379 meta-analyses in 112 systematic reviews

n = 11 202 

Diagnostic test accuracy studies from 
603 meta-analyses in 92 systematic reviews

n = 7480 

Studies from 552 meta-analyses in 92 
systematic reviews  n = 6909 

Excluded:
• Systematic reviews with 

fewer than 4 studies per 
meta-analysis  n = 20 
(meta-analyses  n = 776, 
diagnostic test accuracy 
studies  n = 3722 )

Excluded:
• Studies with case–control 

design  n = 571 
(meta-analyses  n = 51)
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Figure 1: Study flow chart. A systematic review could include several 
meta-analyses. Individual diagnostic test accuracy studies refer to ori-
ginal studies included in each meta-analysis. 
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Figure 2: Locally weighted scatterplot smoothing (LOWESS) plot of logit-transformed sensitivity against prevalence, showing a positive association 
between prevalence and sensitivity.
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Figure 3: Locally weighted scatterplot smoothing (LOWESS) plot of logit-transformed specificity against prevalence, showing a negative association 
between prevalence and specificity.
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The design of diagnostic studies and enrolment procedures 
could lead to increased spectrum effect. For example, test 
ac curacy studies that enroll patients from subspecialty clinics 
may include higher prevalence and sicker patients than when the 
test is conducted in a primary care clinic because of referral 
bias.2 The association between accuracy and prevalence may 
have other explanations. For example, Leeflang2 suggests that an 
inadequate or imperfect reference standard will underestimate 
accuracy, but this effect may decline at a higher prevalance. The 
observed association between test accuracy and prevalence may 
also be related to the fact that it was evaluated within a meta-
analysis and therefore reflects sample sensitivity and specificity, 
whereas the population sensitivity and specificity remain theor-
etically independent.3

For evidence-based practitioners, the current findings sug-
gest that when they apply evidence about diagnostic accuracy of 

a test, they should compare the prevalence of disease in their 
context with that in available studies. A very different prevalence 
may indicate a different disease spectrum and uncertainty about 
the sensitivity and specificity. This uncertainty also affects the 
likelihood ratios, which are derived from sensitivity and specifi-
city and may have a stronger association with prevalence.9

For researchers conducting original studies on diagnostic 
accuracy, special attention should be paid to the spectrum of the 
disease in their sample so that it is consistent with the spectrum 
of disease among people who will receive the test in practice. In 
addition, when the spectrum or prevalence of disease is highly 
variable, researchers should plan stratified analyses by disease 
severity and spectrum.

For researchers conducting systematic reviews of diagnostic 
test studies, our results suggest the need to consider the effect of 
prevalence on diagnostic accuracy measures. They may consider 

Table 1: Mixed-effects model incorporating all meta-analyses*

Outcome OR (95% CI)† Range of prevalence,‡ %

Stratification by prevalence quartile§

Sensitivity

    1st quartile (≤ 25th percentile) Ref. 0.00–80.00

    2nd quartile (26th–50th percentile) 1.17 (1.09–1.26) 0.04–94.90

    3rd quartile (51st–75th percentile) 1.32 (1.23–1.41) 0.06–100.00

    4th quartile (> 75th percentile) 1.47 (1.37–1.58) 0.13–100.00

Specificity

    1st quartile (≤ 25th percentile) Ref.

    2nd quartile (26th–50th percentile) 0.74 (0.69–0.80) 0.00–80.00

    3rd quartile (51st–75th percentile) 0.65 (0.60–0.70) 0.04–94.90

    4th quartile (> 75th percentile) 0.47 (0.44–0.51) 0.06–100.00

Stratification by arbitrary cutoffs of prevalence

Sensitivity, % 

    Prevalence ≤ 25 Ref. 0.00–25.00

    Prevalence 26–50 1.38 (1.29–1.48) 25.06–50.00

    Prevalence 51–75 1.60 (1.53–1.86) 50.25–75.00

    Prevalence > 75 1.98 (1.72–2.28) 75.28–100.00

Specificity, %

    Prevalence ≤ 25 Ref. 0.00–25.00

    Prevalence 26–50 0.65 (0.60–0.70) 25.06–50.00

    Prevalence 51–75 0.42 (0.38–0.47) 50.25–75.00

    Prevalence > 75 0.28 (0.24–0.33) 75.28–100.00

Note: CI = confidence interval, OR = odds ratio, Ref. = reference.
*The models were 3-level, mixed-effects, random intercept linear regression models. Fixed effects included disease prevalence categorized as quartiles based on the distribution 
within a meta-analysis (≤ 25th percentile as reference, 26th–50th percentile, 51st–75th percentile and > 75 percentile) or arbitrary prevalence cutoffs (< 25%, 26%–50%, 51%–75%, 
> 75%), adjusting for the target condition category (collapsed into 5 categories based on the discipline or specialty: internal medicine, surgery, oncology, obstetrics and gynecology, 
and neurology or psychiatry), type of diagnostic test (pathology and cytology, blood test, imaging, physical exam or symptomatology, urine or cerebrospinal fluid test, and multiple 
test types), study setting (inpatient, outpatient and mixed), and risk of bias (low, high and unclear). Random effects were included for each meta-analysis and, then, nested within each 
systematic review.
†Odds ratio shows the changes of odds to correctly identify a true positive case for sensitivity and a true negative case for specificity, when prevalence increased from the reference 
category to a corresponding higher prevalence category.
‡Range of prevalence shows the prevalence range across all 552 meta-analyses.
§Prevalence quartile is identified within a meta-analysis.
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conducting subgroup analyses by prevalence (e.g., low, medium, 
high), although these exploratory analyses can be affected by 
chance findings and errors related to the arbitrary categorizing of 
prevalence into discrete categories. Another approach that may 
avoid some of these limitations is to jointly model disease preva-
lence with diagnostic test sensitivity and specificity, such as by 
using trivariate generalized linear mixed models.12–14 Such models 
can directly estimate the correlations between diagnostic accuracy 
measures with prevalence on a logit-transformed scale, but require 
a large number of studies (> 10) to achieve model convergence.

Limitations
Although the large number of studies of diagnostic test accuracy 
included in this analysis represents a strength, it also made granu-
lar evaluation at a study level infeasible for some factors. We were 
able to address only risk of bias, target condition, study setting and 
diagnostic test type. Other causes of variability include the strin-
gency or misclassification of the gold-standard test or the threshold 
used to categorize study participants as positive for the target con-
dition; these may have contributed to the observed association 

with prevalence. Spectrum bias or effect was not explored by most 
of the systematic reviews evaluated in this study; hence, we did 
not have sufficient information to further explore this issue. We 
also acknowledge the heterogeneity across the studies, which 
we addressed by clustering the regression analysis within each 
meta-analysis, given that the authors had decided that the studies 
were sufficiently similar to include in the same meta-analysis. Ran-
dom measurement error and variability in prevalence may lead to 
regression dilution bias, although such bias would likely drive the 
estimated association toward the null.15 Despite our effort in 
excluding duplicate and overlapping studies or par ticipants, this 
possibility still exists, which is a limitation of meta- epidemiological 
research in which the study is the unit of analysis.

Conclusion
We found that the estimated sensitivity and specificity of diag-
nostic tests are associated with the prevalence of the target con-
dition. Prevalence could be a surrogate of disease spectrum and 
should be considered when interpreting the results of studies 
that evaluate diagnostic test accuracy.

Table 2: Pooled regression coefficients of prevalence from bivariate regression models

Outcome

No. of original diagnostic test 
studies (no. of meta-

analyses)

Pooled regression coefficient 
of prevalence on logit-

transformed sensitivity, 
mean ± SE

Pooled regression coefficient 
of prevalence on logit-

transformed specificity, 
mean ± SE

Overall* 6530 (520) 0.92 ± 0.10 –7.43 ± 2.10

Target condition category

    Internal medicine 2755 (202) 0.72 ± 0.16 –7.93 ± 4.48

    Oncology 1693 (135) 1.78 ± 0.26 –6.93 ± 1.51

    Obstetrics and gynecology 937 (76) 1.02 ± 0.43 –16.64 ± 7.40

    Surgery 567 (39) 0.59 ± 0.40 –1.09 ± 1.21

    Neurology or psychiatry 578 (68) 0.24 ± 0.22 –0.34 ± 1.54

Type of tests

    Pathology and cytology 1369 (82) 1.55 ± 0.29 –9.94 ± 2.42

    Blood tests 1310 (95) 0.56 ± 0.23 –17.40 ± 9.75

    Imaging 1334 (119) 1.21 ± 0.21 –1.40 ± 0.47

    Physical examination or symptomatology 1174 (121) 0.64 ± 0.19 –1.94 ± 0.54

    Multiple types 1265 (88) 0.94 ± 0.26 –12.18 ± 5.97

    Urine or CSF 78 (15) –0.30 ± 0.49 2.88 ± 1.66

Study settings

    Inpatients 929 (70) 0.08 ± 0.28 –19.31 ± 12.87

    Outpatients 1662 (148) 1.11 ± 0.34 –11.74 ± 3.91

    Mixed or unclear 3939 (80) 0.98 ± 0.12 –2.64 ± 0.66

Risk of bias

    Low 2841 (209) 1.28 ± 0.21 –9.81 ± 2.82

    Unclear 1871 (146) 0.97 ± 0.20 –1.67 ± 0.96

    High 1818 (165) 0.45 ± 0.15 –10.78 ± 6.19

Note: CSF = cerebrospinal fluid, SE = standard error.
*32 meta-analyses with 379 diagnostic test studies from the primary analyses were not included as they failed to converge.
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