
Control for confounding is crucial in
causal observational studies. However,
the modelling of continuous con-

founders has not received much attention. This
is probably because in causal research the focus
is on a single factor (i.e., the exposure of inter-
est), and confounders are merely considered as
nuisance. In contrast, diagnostic or prognostic
prediction research focuses on the combined
effect of multiple predictors, each of which is
modelled as accurately as possible.1–4 The lack
of attention for modelling confounders in
causal research is reflected in the limited, if any,
reporting on the adjustment model in observa-
tional studies on causality.5,6

However, modelling of continuous con-
founders is not always straightforward, and
incorrect adjustment for confounders can result
in considerable residual confounding.7–10 For
example, when body temperature is a con-
founder of a certain association, and the associa-
tion between body temperature and the outcome
is not linear, but, for example, U- or J-shaped,
the assumption of a linear relation between the
confounder and outcome can result in substan-
tial residual confounding.11,12 Or even worse, one
can simply adjust for confounding by stratifica-
tion on dichotomized body temperature (e.g.,
fever yes/no). Although this makes the adjust-
ment for confounding easier, it likely results in
inadequate control of confounding (i.e., residual
confounding).1,13

In this paper, we review the current practice
in the reporting of adjustment for continuous
confounders and show the impact on residual
confounding of different methods to control for
continuous confounders. We use data from
2 empirical datasets on the effect of influenza
vaccination on death and the effect of smoking
on cardiovascular death.

Systematic review of the reporting
of confounding adjustment

To assess current practice in the reporting of con-
founding adjustment, we reviewed publications
on original research published October through
December 2011 in high-impact general medical
journals (The New England Journal of Medicine,
The Lancet, The Journal of the American Med-
ical Association, Annals of Internal Medicine,
PLOS Medicine, BMJ and CMAJ). We included
all original nonrandomized studies and excluded
reviews, studies on cost-effectiveness and studies
evaluating the effects of genetic mutations. We
focused on adjustment for the continuous con-
founder age.

We identified 53 papers. Adjustment for con-
founding was performed in all studies, and in 49
(92%) studies the results were adjusted for the
confounder age. In most of these (40/49, 82%),
age was included as a covariate in a regression
model (e.g., Cox or logistic model). For 4 of
these models, the authors explicitly described
that age was included in the model as a linear or
quadratic term, whereas in 7 studies age was
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• Adjustment for confounding is crucial in observational studies on
etiology or on preventive or therapeutic treatment effects.

• A review of current practice in the reporting of adjustment for
continuous confounders in observational epidemiologic studies
showed that the functional relation between continuous confounders
and outcome is hardly ever reported.

• Incorrect modelling of a continuous confounder can result in important
residual confounding, as shown by clinical examples.

• In these clinical examples, adjustment for continuous confounding by
means of stratification of the confounder in 5 strata, and use of
fractional polynomials or restricted cubic splines yielded similar results.
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included in the adjustment model as a catego-
rized variable. In 2 studies, fractional polynomi-
als were applied to model the age–outcome rela-
tion. In the other 27 studies (27/40, 68%) that
applied a regression model, it was unclear how
the relation between age and the outcome was
modelled. Other methods used to control for
confounding by age were matching, standard-
ization and including age as the time-axis in a
Cox model.

Controlling for continuous
confounders

We illustrate methods to control for continuous
confounders using empirical data of 2 cohorts on
(1) the effects of influenza vaccination on death
and (2) the effects of different cardiovascular

risk factors on cardiovascular death. The contin-
uous confounders that were considered in these
studies were use of health care and age, which
showed an approximate linear and quadratic
relation with the outcome, respectively.

Clinical examples
The first observational cohort was set up to study
the effects of influenza vaccination on risk of
death among elderly people living in the com-
munity.14 We selected 20 000 participants aged
65–90 years. An important confounder (among
others) of the association between influenza vac-
cination and death was use of health care, which
is related to an increased risk of death as well as
an increased probability of receiving a vaccina-
tion. Use of health care was defined as the num-
ber of contacts with general practitioners in the
12 months before influenza vaccination and can
be considered as a proxy measure for health sta-
tus. In this case, use of health care was a contin-
uous variable.

The second cohort comprised patients en -
rolled in the Second Manifestations of Arterial
disease (SMART) study, which is an ongoing
prospective cohort study of patients with mani-
fest vascular disease of vascular risk factors.15

From 1996 onwards, patients aged 18–80 years
who were newly referred to the University Med-
ical Center Utrecht, in the Netherlands, were fol-
lowed up. We selected 1500 records to study the
relation between active smoking status at cohort
entry and cardiovascular death. In this study, age
(among others) is an important confounder of
this relation, because age is a risk factor for car-
diovascular death and the prevalence of smoking
changes with age.

Analyses
For all analyses, we used R for Windows, ver-
sion 2.13.1.16 In the cohort studies described
above, the outcome was binary, and we used
logistic regression to analyze the association
between exposure and outcome. We estimated a
crude (unadjusted) association between expo-
sure and outcome. We adjusted for confounding
by including the confounder age in the regres-
sion model in the following ways. First, we
dichotomized age at the median value of the
continuous confounder and included age as a
dichotomous variable in the adjustment model.
Second, we categorized age in 5 categories
(based on quintiles of the continuous con-
founder) and included it in the regression model
as a categorical variable.17 Third, we included
age as a continuous covariate in the regression
model. Fourth, we applied fractional polynomi-
als and restricted cubic splines, which are both
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Odds ratio between influenza vaccination and death
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Method
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Odds ratio (95% CI)
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Figure 1: Comparison of methods to model the relation between a continuous
confounder (use of health care) and outcome (death) in a study of influenza vacci-
nation. Use of health care was defined as the number of contacts with general
practitioners in the 12 months before the influenza vaccination. Use of health
care was dichotomized at the median (i.e., 12 contacts in the 12 months before
the vaccination). Use of health care was divided into 5 categories based on quin-
tiles; cut-values were 5, 9, 14 and 22 contacts in the 12 months before the vaccina-
tion. CI = confidence interval.



methods that more flexibly model the relation
between continuous variables and an outcome.
In both methods, a smooth nonlinear relation
between the continuous confounder and out-
come is modelled by including not only the lin-
ear form of the continuous confounder, but also
other powers (e.g., square root or quadratic
terms).3,11,12 In the case of fractional polynomi-
als, the relation between the continuous con-
founder and the outcome is modelled for the
whole range of values of the confounder.11,12

When applying restricted cubic splines, the
range of the confounder values is first split up
in parts, based on the number of so-called knots
(typically 5).3 Then, for each part, the relation
between the confounder and the outcome is
modelled using the linear form of the continu-
ous confounder as well as other powers. We
used the functions mfp() and fp() from the
library mfp18 to fit the fractional polynomials
and the function rcspline.eval() from the library
Hmisc19 to fit restricted cubic splines. To visu-
ally evaluate the functional form of the relation
between age and the outcomes, we used the
function rcspline.plot() from the library
Hmisc.19 This graphically shows the relation
between the continuous confounder and the
log(odds) of the outcome.

Results

In the study of influenza vaccination on risk of
death, adjustment for the continuous confounder
use of health care by including it as a continuous
covariate in the model yielded substantial change
in the odds ratio (OR) of influenza vaccination
(crude OR 0.94 v. adjusted OR 0.66). Use of
fractional polynomials yielded similar results as
use of restricted cubic splines or modelling a lin-
ear relation between confounder and outcome
(Figure 1). The reason for this was that the func-
tional relation between the continuous con-
founder use of health care and death was indeed
close to linear, as suggested by the graphical pre-
sentation of the relation (Figure 2). Adjustment
for use of health care after dichotomization
yielded an effect estimate (OR 0.72, 95% confi-
dence interval [CI] 0.51–1.01) that was closer to
the crude than the estimates obtained by the
other methods, suggesting the presence of resid-
ual confounding when the continuous con-
founder was included as a dichotomous variable
in the adjustment model.

In the study of the effect of smoking on car-
diovascular death, the relation between the con-
tinuous confounder age and cardiovascular death
was not linear, but appeared quadratic (Figure 3).
Consequently, the estimated effect of smoking

on cardiovascular death differed considerably
between the different methods to adjust for the
continuous confounder. For example, when
adjusting for the dichotomized confounder, the
estimated OR was 1.40 (95% CI 0.97–2.02).
When including the continuous confounder as a
linear term in the adjustment model, this value
increased to OR 1.49 (95% CI 1.03–2.17) and
even to 1.67 (95% CI 1.14–2.46) when applying
restricted cubic splines (Figure 4).

In both examples, controlling for confound-
ing by first categorizing the continuous con-
founder in 5 categories and subsequently strati-
fying on those categories yielded similar (first
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Figure 2: Functional relation between the continuous confounder use of health
care and death in a study of influenza vaccination. GP = general practitioner.
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Figure 3: Functional relation between the continuous confounder age and car-
diovascular death in a study of cardiovascular risk factors.



example) or almost similar (second example)
estimates as the technically more demanding
methods fractional polynomials and restricted
cubic splines. In both examples, however, in -
cluding the continuous confounder as a dichoto-
mous variable in the adjustment model lead to
estimates that were close to the results from the
crude (unadjusted) analysis.

Discussion

The studies presented here illustrate that di -
chotomizing a continuous confounder can result
in considerable residual confounding. Also,
when the relation between a continuous con-
founder and the outcome is not linear, but, for
example, quadratic (as in the example of the
effect of smoking on cardiovascular death),
assuming a linear relation between the con-
founder and outcome can lead to important
residual confounding. Control for confounding

by continuous variables can probably be
achieved by stratification in 5 strata, fractional
polynomials and restricted cubic splines, which
yielded similar results in our clinical examples.

Confounding can be controlled for in the
design or analysis of an observational study.20

When confounding is controlled for in the analy-
sis, this is typically done by including con-
founders as covariates in, for example, a multi-
variable regression model. One key problem is
confounders that are unobserved, which makes
adjustment impossible. A much more subtle
problem is confounders that are actually ob -
served, but that are incorrectly adjusted for.
Choosing the incorrect transformation to model
continuous confounders may then inadequately
control for confounding by those variables and
hence result in residual confounding.7–13 The
impact of incorrect modelling of a continuous
confounder depends on (among others) the
strength of the association between the con-
founder and both the exposure and the outcome,
the distribution of the continuous confounder
and which other confounders are also adjusted
for. Furthermore, the impact of incorrectly
assuming a linear relation between confounder
and outcome depends on the extent of departure
from linearity. In the study of the effect of smok-
ing on cardiovascular death, the relation between
confounder and outcome appeared quadratic
rather than linear, and modelling a linear relation
indeed resulted in considerably different esti-
mates compared with the results based on frac-
tional polynomials and restricted cubic splines.
A potential downside of the latter 2 methods
is that it is less straightforward to interpret the
regression coefficients of the associations be -
tween continuous confounders and outcome.
However, in causal research, the interest lies in
the effects of the casual factor under study, and
not in the associations between confounders and
the outcome.

It should be noted that controlling for contin-
uous confounders does not necessarily require
technically sophisticated methods such as frac-
tional polynomials or splines. Stratification by
categories (e.g., 5 categories) of the confounder
may adequately control for the confounding by
continuous confounders as well,17 although
in extreme settings this may not hold.21 In our
clinical examples, control for continuous con-
founders was indeed similar when stratifying
using 5 strata or when using fractional polyno-
mials or restricted cubic splines. It should be
noted that the results from these methods dif-
fered compared with adjustment by stratifying
on the dichotomized continuous confounder. The
latter is clearly ill-advised.1,13 In general, we rec-
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Odds ratio between smoking and cardiovascular death
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Figure 4: Comparison of methods to model the relation between a continuous
confounder (age) and outcome (cardiovascular death) in a study of cardiovas-
cular risk factors (notably smoking). Age was dichotomized at the median (i.e.,
56 yr). Age was divided into 5 categories based on quintiles; cut-values were
45, 53, 60 and 68 years. CI = confidence interval.



ommend not to use cut-points or, if deemed nec-
essary, to use cut-points that are commonly used
(e.g., age 65 yr) to allow for comparison between
different studies.

Nonlinear relations between continuous con-
founders and outcomes are not always antic i -
pated. For example, the nonlinear relation
between age and cardiovascular death, which
was observed in the study of smoking, might
come as a surprise. The nonlinear relation is
probably due to the fact that the cohort consisted
of patients with manifest vascular disease. In this
cohort, young adults (e.g., < 30 yr) with manifest
vascular disease may have a more severe form of
cardiovascular disease than, for example, adults
about 50 years of age.

There are several limitations to our analysis.
We did not include studies using simulated data.
First, an abundant range of scenarios can be con-
sidered, including scenarios that inherently
favour either restricted cubic splines or fractional
polynomials. This was beyond the scope of this
paper. Second, generalizing findings from simu-
lation studies to empirical studies is not straight-
forward. However, it is relevant to see that in the
empirical examples the use of restricted cubic
splines and fractional polynomials yielded simi-
lar results. The data were used for illustration
purposes only, and not to answer the causality
question of the empirical example data.

In reports on observational studies, model-
ling the proper transformation of the confound-
ing variables typically does not receive much
attention.5,6 For example, which variables are
considered as confounders and adjusted for is
often not routinely reported,5,6 let alone how
continuous confounders were included in the
adjustment model. This was also observed in
our concise review of the current practice in the
reporting of methods to adjust for confounding.
It is difficult to assess the validity of results
from observational studies if any assessment or
modelling of possible nonlinear confounder–
outcome associations is not reported. Given that
incorrect modelling of continuous confounders
can result in important residual confounding,
researchers should be aware of possible nonlin-
ear relations between continuous confounders
and outcome, and we therefore recommend that
such relations are always explored in the data.
We suggest that authors clearly report how they
adjusted for continuous confounders. Apart
from the reporting on confounding adjustment,
the functional form of the relation between con-
tinuous confounders and outcome should
receive ample attention, because ignoring non-
linear relations can lead to important residual
confounding.
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