
Diagnostic accuracy plays a central role
in the evaluation of medical diagnostic
tests. Test accuracy may be expressed

as sensitivity and specificity, as positive and
negative predictive values or as positive and
negative likelihood ratios.1 Some feel that the
positive and negative predictive values of a test
are more clinically relevant measures than sen-
sitivity and specificity. However, predictive val-
ues directly depend on disease prevalence and
can therefore not directly be translated from
one situation to another.2 In contrast, a test’s sen-
sitivity and specificity are commonly believed
not to vary with disease prevalence.3–5

Stability of sensitivity and specificity is an
assumption that underlies the use of Bayes theor -
em in clinical diagnosis. Bayes theorem can be
applied in clinical practice by using the likeli-
hood ratio of a test and the probability of the dis-
ease before the test was done (pretest probabil-
ity) to estimate the probability of disease after
the test was done.2 Because likelihood ratios are
a function of sensitivity and specificity, it is
assumed that the likelihood ratios also remain
the same when prevalence varies.

A number of studies have shown that sensitiv-
ity and specificity may not be as stable as
thought.6–10 We previously summarized the possi-
ble mechanisms through which differences in
disease prevalence may lead to changes in a
test’s sensitivity and specificity.10 Prevalence
affects diagnostic accuracy because of clinical
variability or through artifactual differences, as
described in the theoretical framework in
Table 1. Clinical variability is usually associated
with spectrum effects, referral filters or reader
expectation. For example, using a test in a more
severely diseased population may be associated
with a higher prevalence, or with better perfor-
mance of the test.6,7 Artifactual differences can
result from using additional exclusion criteria,
verification bias or an imperfect reference stan-
dard. For example, using an imperfect reference
standard may lead to an underestimate of diag-
nostic accuracy, but as prevalence increases, the
extent to which this happens will vary.8,9

If these associations between prevalence and
test accuracy are not just hypothetical, this may
have immediate implications for the translation
of research findings into clinical practice. It
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Background: Anecdotal evidence suggests
that the sensitivity and specificity of a diag-
nostic test may vary with disease prevalence.
Our objective was to investigate the associa-
tions between disease prevalence and test
sensitivity and specificity using studies of
diagnostic accuracy.

Methods: We used data from 23 meta-analyses,
each of which included 10–39 studies (416 total).
The median prevalence per review ranged from
1% to 77%. We evaluated the effects of preva-
lence on sensitivity and specificity using a
bivariate random-effects model for each meta-
analysis, with prevalence as a covariate. We
estimated the overall effect of prevalence by
pooling the effects using the inverse variance
method.

Results: Within a given review, a change in
prevalence from the lowest to highest value
resulted in a corresponding change in sensitiv-
ity or specificity from 0 to 40 percentage points.
This effect was statistically significant (p < 0.05)
for either sensitivity or specificity in 8 meta-
analyses (35%). Overall, specificity tended to be
lower with higher disease prevalence; there
was no such systematic effect for sensitivity.

Interpretation: The sensitivity and specificity of a
test often vary with disease prevalence; this
effect is likely to be the result of mechanisms,
such as patient spectrum, that affect prevalence,
sensitivity and specificity. Because it may be dif-
ficult to identify such mechanisms, clinicians
should use prevalence as a guide when selecting
studies that most closely match their situation.
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would imply that sensitivity and specificity of a
test, estimated in one setting, cannot uncondi-
tionally be translated to a setting with a different
disease prevalence. To document the magnitude
of these effects, we reanalyzed a series of previ-
ously published meta-analyses that included
studies of diagnostic test accuracy.

Methods

We included 28 systematic reviews, containing 31
different meta-analyses. These reviews were
selected and analyzed for a previously published
report on bias and variation in diagnostic accu-
racy studies; the details of the search process,
selection and data extraction are available.11

In short, we searched several electronic databases
for systematic reviews published between January
1999 and April 2002 that met the following crite-
ria: estimation of a diagnostic test’s accuracy as the
review’s objective; included at least 10 original
studies of the same diagnostic test; did not exclude
primary studies based on design features; and the
ability to reproduce the 2 × 2 tables from the origi-
nal studies. For the present study, we excluded
case–control studies because it is impossible to
estimate disease prevalence from such studies.

Statistical analyses
Sensitivity and specificity of a test move in oppo-
site directions when the test-positivity threshold

varies. Methods for meta-analyses of diagnostic
accuracy should take this threshold effect into
account.12 We used the bivariate logitnormal ran-
dom-effects model, which allows for this correla-
tion between sensitivity and specificity,13 and
models the logits of sensitivity and specificity.
The logit is the natural logarithm of sensitivity (or
specificity) divided by 1 minus sensitivity (or
specificity). In our results, we back-transformed
these estimates to the original 0 to 100 scale for
sensitivity and specificity.

For each of the eligible meta-analyses, we fit-
ted the model to generate summary estimates of
sensitivity and specificity. To evaluate the associ-
ation between prevalence and sensitivity and
specificity, we included prevalence as a continu-
ous covariate in the model.

We also calculated the summary effect of
prevalence on sensitivity and specificity, by pool-
ing the effects across meta-analyses using the
inverse variance method.14

Based on the summary estimates for sensitiv-
ity and specificity in each model and the esti-
mated effect of prevalence in that model, we cal-
culated the range in sensitivity and specificity for
the observed range in prevalence of that meta-
analysis. We graphically plotted these ranges.

To investigate whether study characteristics,
rather than prevalence, could explain the hetero-
geneity, we reanalyzed the data from the reviews
in which a significant association for prevalence
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Table 1: Theoretical framework of how disease prevalence and test accuracy may be related10

Factor Effect on prevalence Effect on accuracy

Clinical variability

Patient spectrum • Distribution of symptoms and 
severity may change with varying 
prevalence

• Differences in symptoms and 
severity influences sensitivity and 
specificity 

Referral filter • How and through what care
pathway patients are referred may 
influence the spectrum of disease in
the population 

• A change in setting and patient 
spectrum may also alter a test’s 
sensitivity and specificity 

Reader expectations •  Prevalence influences reader
expectations: if one knows that the 
prevalence should be high, then
one’s intrinsic threshold may be
lowered 

•  Changing one’s intrinsic threshold 
will influence accuracy

Artifactual variability 

Distorted inclusion of
participants 

•  Excluding patients with difficult to
diagnose conditions may influence 
the prevalence

•  Excluding patients with difficult to
diagnose conditions will 
overestimate the accuracy of a test 

Verification bias •  If not all patients receive the (same)
reference standard, this influences
prevalence

•  Verification bias has an effect on 
test accuracy

Imperfect reference 
standard

•  Prevalence will be over- or
underestimated 

•  Test accuracy may be
underestimated; the extent of
which varies with prevalence



was been found. In these reviews, we tested, one
at a time, whether study characteristics were
associated with accuracy.

We added the following characteristics to
the model: setting; patient-referral pattern;
consecutive enrolment; exclusion of patients
with difficult-to-diagnose conditions; differen-
tial verification; and partial verification. Setting
was scored as primary, secondary or tertiary
care. Referral could be based on symptoms,
results of an index test or another test. Differ-
ential verification was considered present if the
results of the index test were verified by use of
different reference standards for positive versus
negative index test results. We considered par-
tial verification to be present if not all patients
underwent testing with the reference standard.
To avoid problems in convergence and unstable
estimates, we added covariates to the model
only if there was a minimum of 3 studies at
each level of the covariate.

We compared the goodness-of-fit of a model
that had prevalence as a covariate with the good-
ness-of-fit of a model for the same data that had
another study characteristic as a covariate. We
expressed goodness of fit as the Akaike informa-
tion criterion, with a lower Akaike information
criterion value indicating a better fit of the model.

Analyses were done in SAS for Windows,
version 9.2, using the PROC NLMIXED proce-
dure. The syntaxes are available on request from
the first author. We calculated the summary
effect using Review Manager 5.2 (The Cochrane
Collaboration, 2012). We considered p values
less than 0.05 to be significant.

Results

Of the 31 meta-analyses in our dataset, we
excluded 8 because they contained less than 10
eligible studies. The final dataset consisted of 23
meta-analyses of diagnostic test accuracy, all
involving different medical tests; these analyses
contained data from 416 individual studies.15–38

More information about the included meta-
analyses can be found in the Appendix 1 (avail-
able at www.cmaj .ca /lookup /suppl /doi :10 .1503
/cmaj .121286 / -/DC1).

The disease prevalence ranged from 0.1% to
98% in the 416 included studies, with a median
of 37%. Across the 23 meta-analyses, the median
prevalence varied from 1% to 77% (Figure 1).

Figure 2 summarizes the associations
between prevalence and logit sensitivity or logit
specificity. In 8 of the 23 meta-analyses (35%)
we observed a significant association between
prevalence and either logit sensitivity or logit
specificity, or both. In all cases, a higher preva-

lence accompanied a lower specificity. In the 2
meta-analyses with a significant association
between prevalence and sensitivity,27,33 sensitivity
was higher with higher prevalence.

Overall, there was a significant association
between specificity and prevalence. Based on the
pooled estimate, logit specificity decreased on
average by 0.02 units (95% confidence interval
–0.03 to –0.01) for every 1 percentage point
increase in prevalence. This corresponds with a
decrease in specificity of between 0.1 and 0.5
percentage points; the effect is larger for a speci-
ficity around 50% and smaller for specificity
around 95%. There was no significant overall
association between prevalence and sensitivity.

We compared the meta-analyses in which
prevalence had a significant effect with those in
which prevalence had no effect. There were no
systematic differences between these 2 sets of
meta-analyses in terms of the type of test used,
the range of prevalences or sample size.

Figure 3 shows the differences in sensitivity
and specificity when moving from the lowest
reported prevalence in each review to the highest
prevalence in the same review. For example, in
the review by Safriel and colleagues,33 the lowest
prevalence was 25% and the highest prevalence
was 82%. The estimated sensitivity in the study
with the lowest prevalence was 69%; in the study
with the highest prevalence in the same review,
the sensitivity estimate was 98%. Estimated
specificity varied between 97% and 58% over
the same prevalence range.

We reanalyzed the 8 reviews in which preva-
lence was significantly associated with logit
specificity by including the study characteristics,
one by one, as covariates in the model. The
results of these analyses are summarized in
Appendix 2 (available at www .cmaj .ca /lookup
/suppl /doi :10 .1503 /cmaj  .121286 / -/DC1). For one
review, it was not possible to achieve model con-
vergence, probably because of an almost perfect
correlation between sensitivity and specificity. In
6 of the remaining 7 reviews, prevalence
explained the variation in logit specificity better
(i.e., a smaller Akaike information criterion, indi-
cating a better goodness-of-fit) than any other
study characteristic analyzed. For only the review
of nuchal translucency in the diagnosis of Down
syndrome,31 models that included study character-
istics as covariates fit marginally better than did a
model with prevalence as a covariate.

Interpretation

In this reanalysis of test accuracy reviews, we
found significant associations between preva-
lence and sensitivity or specificity in 1 out of
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every 3 reviews. Overall, specificity was lower in
studies with higher prevalence. We found an
association more often with specificity than with
sensitivity, implying that differences in preva-
lence mainly represent changes in the spectrum
of people without the disease of interest.

We do not and cannot claim that changes in
prevalence cause differences in sensitivity and
specificity. Because sensitivity is estimated in

people with the disease of interest and specificity
in people without the disease of interest, chang-
ing the relative number of people with and with-
out the disease of interest should not introduce
systematic differences. Therefore, the effects that
we found may be generated by other mecha-
nisms that affect both prevalence and accuracy,
as we described earlier.10 In practice, it will be
difficult to identify these mechanisms. Poor
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Figure 1: Prevalence estimates for each primary study in the 23 included meta-analyses. The size of the circle reflects the study size:
< 100 participants; 100–500 participants; 500–1000 participants; and > 1000 participants. Prevalence is shown as a proportion. 



reporting of the design and patient characteristics
in studies of test accuracy is a common problem,
and more recent primary studies are only slightly
better reported.39 Furthermore, there may be
intricate relations between patient features, study
setting and prevalence, making it difficult to dis-
entangle the separate contributing factors.

For clinicians using Bayes theorem in evidence
-based medicine to translate patient-based pretest
probabilities to posttest probabilities, our results
may foster caution. For example, the results
from a study with a prevalence of 45% may not
necessarily justify the calculation of posttest prob-
abilities for patients with low pretest probabilities
in a setting where the prevalence of disease is only

5%. The consequences of these differences for
practice will vary, depending on the extent of dif-
ferences in accuracy across setting.

As an illustration, imagine a clinician who
would like to know how a positive result of 
a spiral computed tomography scan would
increase the probability of a patient having
pulmonary embolism. In the review by Safriel
and colleagues,33 the prevalence of pulmonary
embolism ranged from 25% to 82%, and the
positive likelihood ratio varied from 2.35 to
25.4, with the highest likelihood ratio coming
from the study with the lowest prevalence. If the
prevalence in the clinician’s situation was at the
lower end of the spectrum (e.g., around 30%),
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Figure 2: The effect of prevalence on logit sensitivity and specificity. Prevalence effects on logit sensitivity and specificity are shown per
1%. Beta reflects the effect size. CI = confidence interval.
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the positive likelihood ratio would be 18 and the
posttest probability of pulmonary embolism
with a positive result would be 89%. However,
if the clinician had used evidence from a paper
in which the prevalence was closer to the higher
end (e.g., 57%), the results would have been dif-
ferent. A prevalence of 57% corresponds with a
likelihood ratio of 6.2. Applying the likelihood
ratio of 6.2 to a prevalence of 30% would lead
to a posttest probability of 73%, which in some
situations may lead to a different decision than a
posttest probability of 89%. Applying the Bayes
rule requires that clinicians have an idea of the

disease prevalence among patients suspected of
having the condition of interest.

Comparison with other studies
In the late 1970s, it was already noted that sensi-
tivity and specificity may not be as stable as
thought.40 Most of the publications addressing
variability of sensitivity and specificity focus on
spectrum differences as an explanation.6–8

Another explanation often referred to is the vari-
ation in reference standards, or in disease defini-
tion. Variation in disease definition may cause
variation in patient spectrum, in accuracy and in
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prevalence.8,9 Most of these publications are
based on theoretical reasoning and a few exam-
ples. This study adds empirical evidence from a
range of diseases and tests. Regarding the intri-
cate relations between all contributing factors
and the poor reporting of these factors in accu-
racy studies, we focused on prevalence, being a
relatively well-reported factor.

Limitations
Although the 23 included systematic reviews,
published from 1999 to April 2002, cover 416
studies of test accuracy, this still constitutes a
moderate sample size, relative to the full body of
diagnostic accuracy research. These reviews
cover a wide range of medical tests and con-
ditions and had not been selected based on 
suspected prevalence effects. Still, we must
acknowl edge that the prevalence observed in the
included studies may not always be a good
reflection of the disease prevalence in the actual
patient population from which study participants
were sampled. This will especially be the case if
the study was not based on consecutive enrol-
ment of eligible patients. The most extreme
example would be a case–control study, in which
the prevalence of the target condition in the
study group is artificially set by design. For this
reason, we excluded these case–control designs
from our analyses.

Conclusion
Sensitivity and specificity of a test often vary
with prevalence, likely due to mechanisms that
affect both prevalence and sensitivity and speci-
ficity, such as patient spectrum. Therefore, inves-
tigators are invited to think of the intended use of
the test when designing a study of test accuracy,
and specify the inclusion criteria that define the
study population accordingly.41 If the accuracy
study recruited patients from different settings, a
separate sensitivity–specificity pair for each set-
ting could be reported, for example. Once the
study has been completed, the Standards for the
Reporting of Diagnostic Accuracy Studies
(STARD) checklist can be of help in achieving
complete and informative reporting.42

Our results have implications for clinicians
who turn to the medical literature for estimates
of the accuracy of a test. Physicians should try to
identify the study that most closely matches their
setting. In doing so, they should rely on the defi-
nition of the target condition, inclusion criteria
and prior testing, but they should also use the
reported prevalence in the study as a guide when
evaluating the applicability of the study, provid-
ing that the disease prevalence in the intended
population is known.
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