Accuracy of single-pass whole-body computed tomography for detection of injuries in patients with major blunt trauma

Dirk Stengel MD PhD, Caspar Ottersbach BSc(Psych), Gerrit Matthes MD PhD, Moritz Weigeldt MD, Simon Grundei MD, Grit Rademacher MD, Anja Tittel MD, Sven Mutze MD PhD, Axel Ekkernkamp MD PhD, Matthias Frank MD, Uli Schmucker MD, Julia Seifert MD PhD

Abstract

Background: Contrast-enhanced whole-body computed tomography (also called “pan-scanning”) is considered to be a conclusive diagnostic tool for major trauma. We sought to determine the accuracy of this method, focusing on the reliability of negative results.

Methods: Between July 2006 and December 2008, a total of 982 patients with suspected severe injuries underwent single-pass pan-scanning at a metropolitan trauma centre. The findings of the scan were independently evaluated by two reviewers who analyzed the injuries to five body regions and compared the results to a synopsis of hospital charts, subsequent imaging and interventional procedures. We calculated the sensitivity and specificity of the pan-scan for each body region, and we assessed the residual risk of missed injuries that required surgery or critical care.

Results: A total of 1756 injuries were detected in the 982 patients scanned. Of these, 360 patients had an Injury Severity Score greater than 15. The median length of follow-up was 39 (interquartile range 7–490) days, and 474 patients underwent a definitive reference test. The sensitivity of the initial pan-scan was 84.6% for head and neck injuries, 79.6% for facial injuries, 86.7% for thoracic injuries, 85.7% for abdominal injuries and 86.2% for pelvic injuries. Specificity was 98.9% for head and neck injuries, 99.1% for facial injuries, 98.9% for thoracic injuries, 97.5% for abdominal injuries and 99.8% for pelvic injuries. In total, 62 patients had 70 missed injuries, indicating a residual risk of 6.3% (95% confidence interval 4.9%–8.0%).

Interpretation: We found that the positive results of trauma pan-scans are conclusive but negative results require subsequent confirmation. The pan-scan algorithms reduce, but do not eliminate, the risk of missed injuries, and they should not replace close monitoring and clinical follow-up of patients with major trauma.

Severe trauma is one of the 10 leading causes of burden of disease in North America and Europe. According to a report from the Canadian National Trauma Registry, 14 065 major injuries with an Injury Severity Score above 12 occurred between 2008 and 2009 in the eight provinces that contribute to the National Trauma Registry. Of these, there were 1605 (11%) deaths, and 212 098 hospital-days resulted.

Priority-oriented management requires accurate imaging during resuscitation to avoid missed injuries. Standardized algorithms, such as Advanced Trauma Life Support (ATLS), typically comprise physical examination, focused thoracoabdominal ultrasonography and plain radiography of the chest, spine and pelvis, followed by computed tomography (CT) of the head and other selected body areas. The effectiveness of this staged diagnostic approach, however, has been called into question in recent years.

Contrast-enhanced whole-body CT scanning, often referred to as “pan-scanning,” was first proposed in the late 1990s as an alternative to sequential radiologic imaging in trauma settings. Pan-scan algorithms have been shown to accelerate diagnostic work-up, but their effect on survival is controversial. Opponents have voiced concerns about the overexposure of patients to radiation with the increasing and often uncritical use of CT scanning.

We designed the PATRES (Pan-Scan for Trauma Resuscitation) study to assess the accuracy of the pan-scan in detecting injuries to different body regions in patients with suspected major blunt trauma.

Correspondence to: Dr. Dirk Stengel, dirk.stengel@ukb.de

Methods

Study design and population
In this study, we included data from 1000 consecutive patients with blunt trauma who were transferred directly from the scene to the emergency department of our institution, a metropolitan trauma centre, between July 2006 and November 2008. Resuscitation followed the ATLS algorithm (www.facs.org/trauma/atls) developed by the American College of Surgeons and involved a team of trauma and orthopedic surgeons, anesthesiologists and nursing staff.

We began implementing a pan-scan into the primary trauma survey in our institution in 1997, and we continue to adapt our CT suite and scanning protocols in accordance with the latest multidetector technology.

According to the “red flag” criteria outlined in the German Trauma Association’s clinical practice guidelines for the management of multiple trauma, a pan-scan was ordered in the following situations:

- if there was an injury mechanism that exposed the patient to a high risk of multiple trauma (i.e., a road traffic collision with presumed high-energy trauma, as evidenced by extrication or death of a car occupant, a pedestrian struck by a vehicle, or a fall from height)
- if a technical rescue was required
- if the patient had impaired physical or physiologic status (i.e., unconsciousness, intubation and ventilation, obvious signs of injury such as a bruise, hematoma, open wound or fracture, hemodynamic instability)
- if the suspicion of severe trauma was confirmed by paramedics or emergency doctors on scene.

Figure 1: Flow diagram of the Pan-Scan for Trauma Resuscitation (PATRES) study of the accuracy of using single-pass whole-body computed tomography (pan-scan) to detect injuries in patients who had sustained high-velocity trauma.
Pan-scan protocol
At our institution, the CT suite is adjacent to the trauma room. Patients are scheduled for a pan-scan during or after successful resuscitation if their physiologic parameters allow for the safe performance of whole-body CT imaging. During the study period, imaging was performed using a 64-slice multidetector CT scanner (Brilliance CT-64, Philips, Cleveland, United States). The technical parameters of the protocol are described in Appendix 1 (available at www.cmaj.ca/lookup/suppl/doi:10.1503/cmaj.111420/-/DC1). The images were read by the radiology consultant on call, and the results were immediately reported to the trauma team. All images were discussed the next morning by the radiologists and trauma and orthopedic surgeons during their daily conference.

For the purpose of this study, all images were independently reviewed a second time by two consultant radiologists to determine interobserver agreement.

Definitions
We defined the injuries in advance by consensus between radiologists, trauma and orthopedic surgeons and the methodologic supervisor (Appendix 2, available at www.cmaj.ca/lookup/suppl/doi:10.1503/cmaj.111420/-/DC1). We defined true-positive findings as injuries identified on initial pan-scans that were verified by repeated or further imaging or a certain intervention or

| Table 1: Baseline characteristics and injury details of study patients |
|------------------|------------------|------------------|------------------|
| Characteristic | No. (%)* of patients n = 982 | Characteristic (continued) | No. (%)* of patients n = 982 |
| Age at injury, yr, mean (SD) | 42.0 (19.4) | Time between admission and scanning, min, mean (SD) | 55.8 (133.1) |
| Sex, male | 730 (74.3) | Time between admission and scanning, min, median (IQR) | 29 (20–46) |
| Covered by worker’s compensation | 231 (23.5) | Subsequent reference tests |
| Mechanism of injury | | Computed tomography |
| Road traffic injury† | 591 (60.2) | Cranial | 257 (26.2) |
| Fall from height‡ | 275 (28.0) | Chest | 69 (7.0) |
| Fall on stairs | 54 (5.5) | Abdominal | 72 (7.3) |
| Other§ | 62 (6.3) | Pelvic | 47 (4.8) |
| ISS¶, mean (SD) | 14.1 (13.0) | Spine | 112 (11.4) |
| ISS, median (IQR) | 10 (4–21) | Ultrasound | 331 (33.7) |
| Multiple trauma (ISS >15) | 360 (36.7) | Magnetic resonance imaging | 173 (17.6) |
| ISS, mean (SD) | 27.7 (12.1) | Thoracotomy | 5 (0.5) |
| ISS, median (IQR) | 25 (18–33) | Laparotomy | 37 (3.8) |
| Fracture of an extremity | | Plain radiographs | 711 (72.4) |
| Humeral shaft | 45 (4.6) | Autopsy | 5 (0.5) |
| Forearm | 112 (11.4) | Patients with any reference test | 816 (83.1) |
| Femoral shaft, any | 117 (11.9) | Patients with ≥ 2 reference tests | 522 (53.2) |
| Femoral shaft, bilateral | 29 (3.0) | Patients with any conclusive reference test** | 474 (48.3) |
| Tibia | 169 (17.2) | Duration of follow-up, days, mean (SD) | 293.7 (420.7) |
| Multiple, upper limb | 24 (2.4) | Duration of follow-up, days, median (IQR) | 39 (7–490) |
| Multiple, lower limb | 78 (7.9) | Death | 70 (7.1) |

Note: IQR = interquartile range, ISS = Injury Severity Score, SD = standard deviation.
*Unless stated otherwise.
†Patients with road traffic injuries included car occupants (n = 260), motorcyclists (n = 140), pedestrians (n = 94), bicycle riders (n = 79) and heavy-vehicle drivers (n = 14). The injury mechanism was not specified in four cases.‡The mean height of falling was 2.2 (SD 2.4) metres.
§Other injuries: assaults (n = 14); equestrian injuries (n = 12); explosions (n = 9); airline crashes and skydiving injuries (n = 8); burns (n = 8); crushes and spillages (n = 8); electric trauma (n = 3).
¶The Injury Severity Score was computed as the sum of the squared six-point ordinal Abbreviated Injury Scale (AIS) severity code (known as the post-dot code of the AIS) of the three most severe injuries located in the following anatomic regions: head and neck, face, chest, abdomen (including pelvic organ injuries), extremities (including pelvic ring injuries), and external (i.e., skin and soft tissue). The individual AIS severity code can be traced from the AIS Codebook. Although the AIS may reach values between 1 (minor) and 6 (lethal), the ISS ranges from 0 to 75. An ISS greater than 15 indicate the presence of multiple trauma.
**Includes computed tomography or magnetic resonance imaging of any region, surgical intervention, or autopsy.
Table 2: Diagnostic accuracy of single-pass pan-scanning, by group and body region

<table>
<thead>
<tr>
<th>Region</th>
<th>No. of injuries</th>
<th>Prevalence of injuries, %</th>
<th>No. of true positive pan-scan results / total number of injuries</th>
<th>Sensitivity % (95% CI)</th>
<th>Specificity % (95% CI)</th>
<th>Positive predictive value, % (95% CI)</th>
<th>Negative predictive value, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients, n = 982</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head and neck</td>
<td>338</td>
<td>34.0</td>
<td>286/338</td>
<td>84.6 (80.3–88.3)</td>
<td>637/644</td>
<td>98.9 (97.8–99.6)</td>
<td>97.6 (95.1–99.0)</td>
</tr>
<tr>
<td>Face</td>
<td>191</td>
<td>19.0</td>
<td>152/191</td>
<td>79.6 (73.2–85.1)</td>
<td>784/791</td>
<td>99.1 (98.2–99.6)</td>
<td>95.6 (91.1–98.2)</td>
</tr>
<tr>
<td>Chest</td>
<td>362</td>
<td>37.0</td>
<td>314/362</td>
<td>86.7 (82.8–90.1)</td>
<td>613/620</td>
<td>98.9 (97.7–99.5)</td>
<td>97.8 (95.6–99.1)</td>
</tr>
<tr>
<td>Abdomen</td>
<td>252</td>
<td>26.0</td>
<td>216/254</td>
<td>85.7 (80.8–89.8)</td>
<td>712/770</td>
<td>97.5 (96.1–98.5)</td>
<td>92.3 (88.1–95.4)</td>
</tr>
<tr>
<td>Pelvis</td>
<td>145</td>
<td>15.0</td>
<td>125/145</td>
<td>86.2 (79.5–91.4)</td>
<td>835/837</td>
<td>99.8 (99.1–100)</td>
<td>98.4 (94.4–99.8)</td>
</tr>
<tr>
<td>Patients with multiple trauma, n = 360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head and neck</td>
<td>239</td>
<td>66.0</td>
<td>220/239</td>
<td>92.1 (87.9–95.1)</td>
<td>119/121</td>
<td>98.3 (94.2–99.9)</td>
<td>99.1 (96.8–99.9)</td>
</tr>
<tr>
<td>Face</td>
<td>102</td>
<td>28.0</td>
<td>87/102</td>
<td>85.3 (76.9–91.5)</td>
<td>253/258</td>
<td>98.1 (95.5–99.4)</td>
<td>94.6 (87.8–98.2)</td>
</tr>
<tr>
<td>Chest</td>
<td>220</td>
<td>61.0</td>
<td>197/220</td>
<td>89.5 (84.7–93.3)</td>
<td>137/140</td>
<td>97.9 (93.9–99.6)</td>
<td>98.5 (95.7–99.7)</td>
</tr>
<tr>
<td>Abdomen</td>
<td>141</td>
<td>39.0</td>
<td>125/141</td>
<td>88.7 (82.2–93.4)</td>
<td>209/212</td>
<td>95.4 (91.8–97.8)</td>
<td>92.6 (88.6–96.4)</td>
</tr>
<tr>
<td>Pelvis</td>
<td>84</td>
<td>23.0</td>
<td>75/84</td>
<td>89.3 (80.6–95.0)</td>
<td>274/276</td>
<td>99.3 (97.4–99.9)</td>
<td>97.4 (90.9–99.7)</td>
</tr>
</tbody>
</table>

Note: CI = confidence interval.
waiver was granted because we used routine hospital data. The study was preregistered in the International Standard Randomized Controlled Trial Number Register (ISRCTN41462125).

Statistical analysis

Descriptive statistics for continuous variables were expressed as mean, median, standard deviation (SD) and interquartile range (IQR). We expressed categorical variables as numbers and percentages. We assessed inter-rater agreement between radiology consultants for the index test and between clinical reviewers for the reference standard by use of Cohen’s κ.20

We calculated sensitivity, specificity and positive and negative predictive values by comparing the results of the index test (i.e., the results of the initial pan-scan) to the reference standard (i.e., the presence or absence of injuries based on the synopsis of all follow-up data). We calculated 95% confidence intervals (CIs) for all measures of test accuracy.

We performed the analyses for each body region (head and neck, face, chest, abdomen, and pelvic ring) and for individual injuries in these regions.

We performed descriptive subgroup analyses for patients with and without multiple trauma (Injury Severity Score > 15 and ≤ 15, respectively) and for patients who underwent any conclusive reference testing (i.e., CT, magnetic resonance imaging, surgery or autopsy) or who were followed-up by clinical observation, radiography and ultrasonography alone. We also performed subgroup analyses by length of follow-up (separated into quartiles).

We graphically analyzed whether there was an optimal time window for scheduling patients for a pan-scan that is associated with highest sensitivity and specificity. The interval between arrival of the patient and the start of the scan was separated into centiles, and we computed diagnostic indices for cumulative numbers of patients undergoing the test within consecutive periods of time (e.g., ≤ 14 min, ≤ 18 min, ≤ 22 min).

We used logistic regression analyses to model the association between the lag time to scanning and the incidence of therapeutically relevant missed injuries.

Results

Of the 1000 consecutive patients admitted and screened during the study period, we included 982 unique patients because of the availability of pan-scan reports and images. Table 1 presents the characteristics of all included patients. Figure 1 shows the study flowchart and the test verification protocol designed based on the Standards for the Reporting of Diagnostic Accuracy Studies.21 In total, a diagnosis of multiple trauma was made for 360 patients (36.7%) based on the results of the reference standard.

The reviewers found that 77 (7.8%) of the pan-scans were unnecessary or were a result of over-triaging. They concluded that selective scanning would have been sufficient for these patients. This included 40 patients with minor injuries (Injury Severity Score < 6), 22 patients with head and neck injuries, 11 patients with fractures of the mid-face, thoracic spine or lumbar spine and ribs, and 4 patients with complex fractures of the extremities.
Interobserver agreement between radiologists during re-reading of initial scans was substantial (median $\kappa = 0.83$, IQR 0.70–0.86). The reviewers agreed on the presence or absence of injuries with a median κ of 0.88 (IQR 0.80–0.89).

Table 2 summarizes the diagnostic accuracy by body region for all patients and for the subgroup of patients with multiple trauma. The diagnostic accuracy for individual injuries is shown in Appendix 3 (available at www.cmaj.ca/lookup/suppl/doi:10.1503/cmaj.111420/-/DC1). The pan-scan was consistently specific (97.5%–99.8%), but the sensitivity was variable (79.6%–86.7%) for detecting injuries to the body regions of interest. A higher sensitivity was found for patients with multiple trauma (85.3%–92.1%) than for patients without multiple trauma.

Because of legal regulations, we did not have access to forensic autopsy reports. When we limited our analysis to the 912 surviving patients, we obtained virtually similar results (data not shown).

The optimal accuracy of the pan-scan was between 24 and 34 minutes after admission (Figure 2). During this period, the sensitivity was 83.8%–88.3% and specificity was 98.3%–100% for different body regions.

The initial pan-scan did not detect 70 injuries (in 62 patients) that subsequently required monitoring in the intensive care unit (6.3%, 95% CI 4.9%–8.0%, Table 3).

The predicted probability of missed injuries decreased slightly with longer intervals between admission and scanning (Figure 3). However, this trend was not significant (odds ratio 0.99, 95% CI 0.98–1.00).

Interpretation
We found that single-pass whole-body computed tomography is highly specific but has variable sensitivity for the detection of injuries in patients with suspected blunt trauma. Screening tests in trauma are intended to immediately detect life-threatening injuries. Given this premise, high specificity makes pan-scanning a valuable tool for priority-oriented treatment planning.

Negative results require confirmation during clinical monitoring or by follow-up examination and imaging. The main diagnostic gaps included injuries that demarcate after fluid resuscitation (e.g., solid organ contusions, liver rupture, and stab wounds).
mesenteric tears). We found the best balance between sensitivity and specificity when the pan-scan was performed about 30 minutes after admission. In addition to better visibility of lesions after blood circulation and tissue perfusion are restored, we speculate that the clinical situations that allowed a short delay before scanning were associated with less time pressure when reviewing the CT images.

This study of the diagnostic accuracy of pan-scanning contributes information to the primary, or efficacy, level of the health technology assessment cascade, and our results may help to understand the survival benefit associated with trauma pan-scanning observed in two previous studies. Injuries that can only be visualized by a whole-body scan may overemphasize the severity of the injury and artificially increase the ratio of observed to expected survivors. However, our data give support to the alternative theory that a primary pan-scan effectively omits many diagnostic steps between clinical suspicion and definitive proof of injuries that require immediate therapeutic attention.

Limitations

This was a single-centre study that has limited generalizability to other populations. The trauma algorithm established at our institution does not allow for a comparison of accuracy indices between pan-scans and conventional diagnostic work-ups. The imperfect reference standard used, which combined with clinical and radiologic tests, could have introduced partial verification bias, and we may have underestimated the sensitivity of the pan-scan results because our definitions of true and false results may have been too conservative. Finally, we did not address the problem of nontraumatic incidental findings, which occur in up to one-third of all patients who undergo trauma scanning.

Conclusion

Positive pan-scan results are conclusive, but negative results require subsequent confirmation. Pan-scan algorithms reduce, but do not eliminate, the risk of missed injuries, and they should not replace close monitoring and clinical follow-up of patients with major trauma. Our results need to be validated in a prospective, multicentre setting using a uniform diagnostic reference standard. Further research is needed to determine the impact of pan-scan findings on management decisions. New criteria for the appropriate application of pan-scans must be developed to accurately triage the patients with severe trauma who will benefit most from this diagnostic procedure.

References

Affiliations: From the Centre for Clinical Research (Stengel, Ottersbach, Grundei), Department of Trauma and Orthopaedic Surgery (Matthes, Weigeldt, Seifert) and the Department of Radiology (Rademacher, Tittel, Mutze), Unfallkrankenhaus Berlin, Berlin, Germany; and the Department of Trauma and Reconstructive Surgery (Stengel, Ottersbach, Ekkernkamp, Frank, Schmucker, Seifert), Ernst Moritz Arndt University Medical Center, Greifswald, Germany.

Contributors: Gerrit Matthes and Caspar Ottersbach contributed equally to this work. Dirk Stengel, Gerrit Matthes, Grit Rademacher, Sven Mutze and Julia Seifert were responsible for the study conception and design. Caspar Ottersbach, Moritz Weigeldt and Simon Grundei were responsible for data collection and correlation of the index test and reference standard findings. Grit Rademacher, Anja Tittel and Sven Mutze collected and re-evaluated all radiologic images. Dirk Stengel and Caspar Ottersbach performed all statistical analyses, and Dirk Stengel drafted the manuscript. Dirk Stengel, Matthias Frank, Uli Schmucker, Axel Ekkernkamp, Gerrit Matthes and Julia Seifert critically revised the manuscript for important intellectual content. All authors read and approved the manuscript submitted for publication. Dirk Stengel is the guarantor of this study.

Funding: No third party funding in any form was obtained for data collection or analysis.

Acknowledgements: The authors thank Annette Luckmann, MA, Centre for Clinical Research, Unfallkrankenhaus Berlin, Berlin, Germany, for assistance with manuscript preparation. The authors thank Kathleen Füssler, MSc, Center for Clinical Research, Unfallkrankenhaus Berlin, Berlin, Germany, for assistance with data entry.