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R elated articles have outlined problems with the develop-
ment of machine-learned solutions for health care and 
suggested a framework for their optimal development.1,2 

The spectrum of clinical settings in which machine learning 
approaches have been examined for use in the health care setting 
has increased markedly and become more diverse in recent years. 
Many studies have detailed the data science and statistical bases 
of machine-learned tools.2 However, comparatively few studies 
have focused on their evaluation and implementation.3 We dis-
cuss how to evaluate machine-learned solutions throughout their 
life cycle to optimize their use and functionality in clinical prac-
tice. Internal validation — that is, ascertaining the discriminative 
and calibration performance of an algorithm — should be fol-
lowed by evaluation of both performance and outcomes of inter-
est in the clinical setting, as well as evaluation of the tool’s imple-
mentation into existing workflows (as outlined in Figure 1).

What is the process of model or algorithm 
development and interval validation?

Initially, evaluation of the predictive performance of machine-
learned algorithms involves assessing their discriminatory and 
calibration accuracy. The former quantifies the ability of the 
algorithm to separate individuals according to the presence or 
absence of a given outcome, and the latter measures how close 
the predicted probabilities are to actual probabilities.4 Such 
experiments comprise the internal validation stage of machine-
learned algorithm development and represent the majority of 
published reports describing machine learning in medicine.3

Typically, studies determining the predictive performance 
and accuracy of different algorithms are retrospective in nature. 
Large, historically labelled data sets are used to train and test 
algorithms.3,5 Machine learning methods employed at this stage 
range from relatively familiar approaches such as linear or logis-
tic regression to more complex neural networks and natural lan-
guage processing models.5,6 In all cases, algorithms are first 
“trained” on the largest portion of the data reserved for this pur-
pose, and then evaluated on the remaining data, referred to as 
the test data.3–5 When the outcome of interest is binary (e.g., dis-
ease present or absent), performance is typically reported using 

standard measures such as sensitivity, specificity and the area 
under the receiver operator characteristic curve.5,7 For continu-
ous outcomes (e.g., predicted dose of a medication), perform
ance is generally quantified using measures such as the root 
mean squared error or mean absolute error.8 Graphical methods, 
such as calibration slopes and calibration curves, can be used to 
assess model calibration.9 

Although the need for clinician or stakeholder input at this 
technical stage of development may not be immediately appar-
ent, clinicians can provide important insights regarding the 
interpretability of performance metrics and acceptable thresh-
olds of model performance for clinical practice.10 For example, 
as part of the development of a machine-learned-based early 
warning system predicting patient deterioration and need for 
intensive care within a 24-hour period, a maximum of 2 false 
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Key points
•	 Evaluation of machine-learned systems is a multifaceted 

process that encompasses internal validation, clinical 
validation, clinical outcomes evaluation, implementation 
research and postimplementation evaluation.

•	 Approaches to clinical validation include comparisons of model 
performance with those of clinician experts and silent 
deployment of systems with comparisons of predictions to 
actual patient outcomes; clinical outcome evaluation can be 
done through randomized controlled trials, cohort studies, 
interrupted time series analyses and before-and-after studies.

•	 Implementation research includes qualitative and quantitative 
components and formative assessments and is attentive to the 
context in which the system is being deployed while evaluation 
frameworks can help teams structure their studies and analyses.

•	 Postimplementation evaluation is necessary to monitor for and 
account for threats to system performance after deployment, 
which may necessitate retraining and recalibration of machine-
learned systems.

•	 A multidisciplinary team comprising data scientists, clinician 
experts and implementation scientists (qualitative and 
quantitative expertise) can help ensure that a comprehensive 
evaluation is undertaken before, during and after deployment.
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alarms per true alarm was identified by clinicians as an accept-
able threshold for performance to guard against “alert fatigue.”1 
Based on this requirement, it was determined that the system 
should have a positive predictive value of at least 0.3 while 
detecting as many deteriorating patients as possible.1 Because 
optimal performance metrics will vary by clinical context, defin-
ing performance will therefore require consideration of clinician 
preferences and the care environment in which the machine-
learned system will ultimately be operating.1,10

How should machine-learned solutions be 
validated clinically?

Performance of machine-learned tools on real-world data that 
are new to the algorithm may differ from performance during 
internal validation.2 Consequently, prospective studies that 
compare predictions made by machine-learned algorithms with 
clinician predictions are required to ascertain their performance 
in a clinical setting. As described in our related paper, this 
approach was used as part of the evaluation of a machine-
learned early warning system for patients on medical wards 
designed to identify who may require critical care; in this 
evaluation, we found improved sensitivity of the early warning 
system over prediction by clinicians.1 Other examples include 
comparisons between machine-learned systems and derma
tologists for diagnosing skin cancers;11–14 diagnosis of age-related 
macular degeneration and diabetic retinopathy using retinal 
optical coherence tomography or fundus photographs;15–17 
identification of breast cancer metastases in lymph node 
biopsies;18,19 and detection of polyps at colonoscopy.20,21

Another approach to clinical validation involves comparing 
the performance of a newly developed machine-learned algo-
rithm against already validated clinical risk–scoring tools that 
are commonly used in clinical practice. This approach has 
been applied to various problems; e.g., predicting gastrointes-
tinal bleeding and mortality after cardiac surgery.22,23 As with 
approaches involving predictions by clinicians, comparisons 
with validated risk-scoring tools should be undertaken using 
data that were not part of the machine-learned model’s devel-
opment process.

Although many studies have shown the performance of 
machine-learned tools to be at least comparable to the per
formance of expert physicians, this is not always the case,24 
which underscores the need to conduct clinical verification stud-
ies before moving forward with more resource-intensive forms of 

evaluation. Clinical validation can be particularly challenging 
when diagnostic interrater reliability among clinicians is poor. In 
this context, it may be difficult to compare the discriminative 
performance of clinicians versus machine-learned systems, given 
the challenges associated with discriminating between the pres-
ence or absence of disease or associated stages of illness (e.g., 
remission, relapse). Potential strategies for addressing this prob-
lem include use of more concrete, measurable aspects of a spe-
cific illness (e.g., change in symptom scores or laboratory param-
eters) or a directly observable functional outcome (e.g., ability to 
return to work) rather than diagnostic labels denoting the pres-
ence or absence of disease when training models.

“Silent deployment” is another approach that may be used 
for clinical validation. As described in a related article, the 
machine-learned system runs in a silent mode and generates 
predictions, yet these are not communicated to clinicians and 
therefore do not influence care.1 Although silent deployment typ-
ically focuses on issues related to technical deployment and 
workflow and does not involve clinical interventions, predictions 
made by the tool during silent deployment can be compared 
with the actual patient outcomes, which allows for estimation of 
the algorithm performance.

Large data sets are generally not required for the prospec-
tive validation of machine-learned algorithms. Instead, sample 
sizes can be estimated using established methods for studies of 
test accuracy.25

How can we establish whether machine-learned 
solutions improve patient outcomes?

Establishing and verifying predictive performance through inter-
nal and clinical validation studies does not answer the funda-
mental question of whether patients benefit from the integration 
of machine-learned solutions into clinical practice.26 Generating 
robust evidence that supports the impact of such algorithms on 
patient outcomes is a prerequisite to widespread implementa-
tion in clinical practice and investment in resources and infra-
structure required to continuously monitor the performance of 
such tools once deployed is needed.

As with other interventions, randomized controlled trials 
(RCTs) are the gold standard for establishing the efficacy of 
interventions developed through machine learning. Yet, rela-
tively few RCTs of machine-learned interventions have been 
registered or published.3,27 These include a double-blind RCT of 
an algorithm to detect acute neurologic events and a trial 
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Figure 1: Evaluation life cycle of machine-learned systems in health care.
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comparing automated interpretation of cardiotocographs with 
usual care on clinical outcomes in mothers and infants.28,29 Pos-
sible reasons for the dearth of RCTs in the field of machine 
learning include the need for large samples of patients or long 
durations of follow-up to show efficacy, cost and concerns 
regarding intervention fidelity or cross-group contamination 
when trials are conducted within the same institution. Although 
cluster RCTs could address the latter issue, these studies add to 
the logistical and methodological complexities inherent in multi
site trials.30,31

Because conducting RCTs is challenging, other approaches 
are often used for generating evidence of clinical benefit of 
machine-learned systems, such as matched cohorts, quasi-
experimental interrupted time series analyses, and prospective 
before-and-after studies.32–34 In a related article, we described 
how we planned to use an observational matched cohort study 
design to evaluate a machine-learned early warning system in a 
General Internal Medicine unit, given that an RCT was estimated 
to require about 25 000 patients.1 Although findings from obser-
vational studies are often considered to be a lower level of evi-
dence than RCT findings, they provide a compromise between 
the needs of stakeholders and clinicians seeking timely evidence 
of clinical impact with machine-learned interventions and the 
resources required to conduct RCTs.

How can the implementation of machine-learned 
solutions be optimized?

Despite the potential of interventions developed using machine 
learning to assist with clinical decision-making and improve clin-
ical workflow, only a few examples of successful deployment in 
clinical practice currently exist.35 Moreover, studies that describe 
the steps taken to translate machine-learned algorithms into 
clinical tools are few. However, such studies are important for 
identifying and addressing social, ethical, organizational and 
logistical barriers to adoption. Implementation science — the 
study of methods for promoting the uptake of interventions into 
routine practice — should therefore be considered as fundamen-
tal as data science and clinical outcome evaluation for integra-
tion of machine-learned systems into clinical practice.36,37 
Although a detailed exposition of implementation science is 
beyond the scope of this article, several points merit emphasis.

In contrast to internal validation and clinical research, which 
emphasize the performance and efficacy or effectiveness of 
machine-learned solutions, implementation science research 
questions and outcomes focus on the process of implementa-
tion, and could include measures of intervention uptake or 
acceptability; they may characterize provider perceptions of the 
intervention on established workflows, as well as changes in pro-
cesses of care.37 In addition, understanding the context in which 
the machine-learned system is being implemented is important 
for optimizing uptake.36 This requires addressing questions such 
as how to best align the system with existing workflows, how to 
customize the end-user interface in a manner that minimizes dis-
ruption to existing practices and which members of the care 
team will be interacting with the system.

Quantitative and qualitative approaches can be used for 
implementation research. Quantitative data can be derived 
through the use of structured surveys, administrative health 
databases, electronic health records and decision support sys-
tems, depending on the outcomes being examined.38 Surveys can 
be used to ascertain facilitators and barriers to implementation, 
attitudes about the integration of the system in established 
workflows and acceptability of the intervention. Health records 
can be sources of information regarding intervention uptake, 
quality of care and costs. Qualitative methods can add depth and 
contextualization to quantitative approaches by examining how 
and why an intervention is or is not being used by clinicians, pro-
viding potential insights into interprofessional or organizational 
dynamics that influence uptake, and sociocultural barriers to 
implementation.39 Qualitative data may be generated through in-
depth interviews, focus groups, document analysis or observa-
tion, depending on the research question(s) and methodologic or 
theoretical orientation of the researcher.

Formative evaluations, wherein data are generated and 
shared with the research team and target clinicians at different 
stages of implementation, allow an implementation team to 
troubleshoot challenges arising during implementation and 
adapt the solution to better integrate into care processes.40 
Using an evaluation framework or theory when studying the 
implementation of machine-learned tools can assist research-
ers in structuring their studies and specifying concepts that 
warrant measurement. Readers are referred elsewhere for an 
overview of commonly used evaluation frameworks in imple-
mentation research.41

Why is ongoing postimplementation 
evaluation necessary?

Because clinical practice and processes evolve over time, the 
evaluation of machine-learned solutions does not end with imple-
mentation. Instead, ongoing evaluation of such systems is 
required to continuously monitor performance. An important 
threat to their performance is data-set shift, where temporal 
changes in clinical practice or the distribution of patient charac-
teristics result in a data set that differs from that which was ori
ginally used to train the algorithm.42–44 This can occur, for exam-
ple, if a machine-learned algorithm is used to make clinical 
predictions on data from an increasingly ethnically diverse popu-
lation, or a new site with a different patient population from the 
training data set.2,45 Other data-related threats to system perform
ance could include changes in the variables that were originally 
used in model training, such as the addition of new categories or 
an increasing frequency of missingness in selected variables.

Evaluating ongoing system performance may incorporate 
several steps,46–49 including regularly retraining systems with 
the most recent data sets, comparing model performance on 
updated data with data currently in use and investigating dis-
crepancies; updating outcome definitions and model inputs to 
align with evolving disease epidemiology, treatment or patho-
physiology; generating alerts that are triggered when variable 
frequency distributions change; and regularly consulting with 
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clinical experts to monitor changes in system performance 
and ensure sustained clinical relevance. Where feasible, post-
implementation evaluation of machine-learned solutions 
should be automated and scheduled at regular intervals to 
detect, investigate and resolve sources of system deteriora-
tion expeditiously.

Conclusion

Evaluation of machine-learned solutions is a multifaceted pro-
cess that requires the expertise of data scientists, clinician 
experts and implementation scientists. Presently, most litera-
ture describing evaluation of these solutions remains focused 
on internal validation, with relatively few studies examining 
clinical outcomes and system implementation. This imbalance 
has contributed to what has been referred to as the “artificial 
intelligence chasm,” representing the gap between the develop-
ment and validation of machine-learned algorithms and their 
eventual use in clinical practice.43 Additional clinical outcomes 
and implementation research is therefore necessary to fully 
realize the potential of machine learning in medicine.
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