Skip to main content

Main menu

  • Home
  • COVID-19
    • Articles & podcasts
    • Blog posts
    • Collection
    • News
  • Content
    • Current issue
    • Past issues
    • Early releases
    • Collections
    • Sections
    • Blog
    • Infographics & illustrations
    • Podcasts
    • Classified ads
  • Authors
    • Overview for authors
    • Submission guidelines
    • Submit a manuscript
    • Forms
    • Editorial process
    • Editorial policies
    • Peer review process
    • Publication fees
    • Reprint requests
  • CMA Members
    • Overview for members
    • Earn CPD Credits
    • Print copies of CMAJ
    • Career Ad Discount
  • Subscribers
    • General information
    • View prices
  • Alerts
    • Email alerts
    • RSS
  • JAMC
    • À propos
    • Numéro en cours
    • Archives
    • Sections
    • Abonnement
    • Alertes
  • CMAJ JOURNALS
    • CMAJ Open
    • CJS
    • JAMC
    • JPN

User menu

Search

  • Advanced search
CMAJ
  • CMAJ JOURNALS
    • CMAJ Open
    • CJS
    • JAMC
    • JPN
CMAJ

Advanced Search

  • Home
  • COVID-19
    • Articles & podcasts
    • Blog posts
    • Collection
    • News
  • Content
    • Current issue
    • Past issues
    • Early releases
    • Collections
    • Sections
    • Blog
    • Infographics & illustrations
    • Podcasts
    • Classified ads
  • Authors
    • Overview for authors
    • Submission guidelines
    • Submit a manuscript
    • Forms
    • Editorial process
    • Editorial policies
    • Peer review process
    • Publication fees
    • Reprint requests
  • CMA Members
    • Overview for members
    • Earn CPD Credits
    • Print copies of CMAJ
    • Career Ad Discount
  • Subscribers
    • General information
    • View prices
  • Alerts
    • Email alerts
    • RSS
  • JAMC
    • À propos
    • Numéro en cours
    • Archives
    • Sections
    • Abonnement
    • Alertes
  • Visit CMAJ on Facebook
  • Follow CMAJ on Twitter
  • Follow CMAJ on Pinterest
  • Follow CMAJ on Youtube
  • Follow CMAJ on Instagram
Research

Predicting potential survival benefit of renal transplantation in patients with chronic kidney disease

Carl van Walraven, Peter C. Austin and Greg Knoll
CMAJ April 20, 2010 182 (7) 666-672; DOI: https://doi.org/10.1503/cmaj.091661
Carl van Walraven
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter C. Austin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Greg Knoll
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Tables
  • Related Content
  • Responses
  • Metrics
  • PDF
Loading

Abstract

Background: To facilitate decision-making about treatment options for patients with end-stage renal disease considering kidney transplantation, we sought to develop an index for clinical prediction of risk for death.

Methods: We derived and validated a multivariable survival model predicting time to death in 169 393 patients with end-stage renal disease who were eligible for transplantation. We modified the model into a simple point-system index.

Results: Deaths occurred in 23.5% of the cohort. Twelve variables independently predicted death: age, race, cause of kidney failure, body mass index, comorbid disease, smoking, employment status, serum albumin level, year of first renal replacement therapy, kidney transplantation, time to transplant wait-listing and time on the wait list. The index separated patients into 26 groups having significantly unique five-year survival, ranging from 97.8% in the lowest-risk group to 24.7% in the highest-risk group. The index score was discriminative, with a concordance probability of 0.746 (95% CI 0.741–0.751). Observed survival in the derivation and validation cohorts was similar for each level of index score in 93.9% of patients.

Interpretation: Our prognostic index uses commonly available information to predict mortality accurately in patients with end-stage renal disease. This index could provide valuable quantitative data on survival for clinicians and patients to use when deciding whether to pursue transplantation or remain on dialysis.

View Full Text
PreviousNext
Back to top

In this issue

Canadian Medical Association Journal: 182 (7)
CMAJ
Vol. 182, Issue 7
20 Apr 2010
  • Table of Contents
  • Index by author

Article tools

Respond to this article
Print
Download PDF
Article Alerts
To sign up for email alerts or to access your current email alerts, enter your email address below:
Email Article

Thank you for your interest in spreading the word on CMAJ.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Predicting potential survival benefit of renal transplantation in patients with chronic kidney disease
(Your Name) has sent you a message from CMAJ
(Your Name) thought you would like to see the CMAJ web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Predicting potential survival benefit of renal transplantation in patients with chronic kidney disease
Carl van Walraven, Peter C. Austin, Greg Knoll
CMAJ Apr 2010, 182 (7) 666-672; DOI: 10.1503/cmaj.091661

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
‍ Request Permissions
Share
Predicting potential survival benefit of renal transplantation in patients with chronic kidney disease
Carl van Walraven, Peter C. Austin, Greg Knoll
CMAJ Apr 2010, 182 (7) 666-672; DOI: 10.1503/cmaj.091661
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Interpretation
    • Footnotes
    • REFERENCES
  • Figures & Tables
  • Related Content
  • Responses
  • Metrics
  • PDF

Related Articles

  • Highlights
  • PubMed
  • Google Scholar

Cited By...

  • Simulating the New Kidney Allocation Policy in the United States: Modest Gains and Many Unknowns
  • Initiating and Completing the Kidney Transplant Evaluation Process: The Red Queen's Race
  • Google Scholar

More in this TOC Section

  • Emergency department use following incentives to provide after-hours primary care: a retrospective cohort study
  • Physician choices in pulmonary embolism testing
  • Diagnosis-wide analysis of COVID-19 complications: an exposure-crossover study
Show more Research

Similar Articles

Collections

  • Topics
    • Transplant medicine
    • Patient safety & quality improvement
    • Nephrology

Content

  • Current issue
  • Past issues
  • Collections
  • Sections
  • Blog
  • Podcasts
  • Alerts
  • RSS
  • Early releases

Information for

  • Advertisers
  • Authors
  • Reviewers
  • CMA Members
  • Media
  • Reprint requests
  • Subscribers

About

  • General Information
  • Journal staff
  • Editorial Board
  • Governance Council
  • Journal Oversight
  • Careers
  • Contact
  • Copyright and Permissions

Copyright 2021, Joule Inc. or its licensors. All rights reserved. ISSN 1488-2329 (e) 0820-3946 (p)

All editorial matter in CMAJ represents the opinions of the authors and not necessarily those of the Canadian Medical Association or its subsidiaries.

Powered by HighWire