Skip to main content

Main menu

  • Home
  • Content
    • Current issue
    • Past issues
    • Early releases
    • Collections
    • Sections
    • Blog
    • Infographics & illustrations
    • Podcasts
    • COVID-19 articles
    • Obituary notices
  • Authors & Reviewers
    • Overview for authors
    • Submission guidelines
    • Submit a manuscript
    • Forms
    • Editorial process
    • Editorial policies
    • Peer review process
    • Publication fees
    • Reprint requests
    • Open access
    • Patient engagement
  • Physicians & Subscribers
    • Benefits for Canadian physicians
    • CPD Credits for CMA Members
    • Subscribe to CMAJ Print
    • Subscription prices
    • Obituary notices
  • Alerts
    • Email alerts
    • RSS
  • JAMC
    • À propos
    • Numéro en cours
    • Archives
    • Sections
    • Abonnement
    • Alertes
    • Trousse média 2023
    • Avis de décès
  • CMAJ JOURNALS
    • CMAJ Open
    • CJS
    • JAMC
    • JPN

User menu

Search

  • Advanced search
CMAJ
  • CMAJ JOURNALS
    • CMAJ Open
    • CJS
    • JAMC
    • JPN
CMAJ

Advanced Search

  • Home
  • Content
    • Current issue
    • Past issues
    • Early releases
    • Collections
    • Sections
    • Blog
    • Infographics & illustrations
    • Podcasts
    • COVID-19 articles
    • Obituary notices
  • Authors & Reviewers
    • Overview for authors
    • Submission guidelines
    • Submit a manuscript
    • Forms
    • Editorial process
    • Editorial policies
    • Peer review process
    • Publication fees
    • Reprint requests
    • Open access
    • Patient engagement
  • Physicians & Subscribers
    • Benefits for Canadian physicians
    • CPD Credits for CMA Members
    • Subscribe to CMAJ Print
    • Subscription prices
    • Obituary notices
  • Alerts
    • Email alerts
    • RSS
  • JAMC
    • À propos
    • Numéro en cours
    • Archives
    • Sections
    • Abonnement
    • Alertes
    • Trousse média 2023
    • Avis de décès
  • Visit CMAJ on Facebook
  • Follow CMAJ on Twitter
  • Follow CMAJ on Instagram
  • Listen to CMAJ podcasts
Research

Obstructive sleep apnea in 2 women with familial partial lipodystrophy due to a heterozygous LMNA R482Q mutation

Robert A. Hegele, Salam A. Al-Attar and Brian K. Rutt
CMAJ September 25, 2007 177 (7) 743-745; DOI: https://doi.org/10.1503/cmaj.070135
Robert A. Hegele MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Salam A. Al-Attar BSc
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brian K. Rutt PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Tables
  • Responses
  • Metrics
  • PDF
Loading
  • © 2007 Canadian Medical Association

Although obstructive sleep apnea has many attributes of a complex genetic trait,1 few genetic mutations have been identified in patients with the condition. Obesity has been shown to be associated with obstructive sleep apnea in the general population,2 but few rare genetic syndromes affecting total body adipose content or distribution have been evaluated for possible association with obstructive sleep apnea. Familial partial lipodystrophy subtype 2 most often results from mutations in LMNA, the gene encoding nuclear lamin A/C (MIM 151660). Patients with familial partial lipodystrophy subtype 2 are healthy at birth, but around puberty they lose fat stores selectively in the extremities and gluteal region, while visceral, facial and neck fat stores are preserved and may enlarge with caloric excess.3 Familial partial lipodystrophy subtype 2 has been called “fat neck” syndrome in the past.3 Using polysomnography, we have documented the presence of obstructive sleep apnea in 2 women with familial partial lipodystrophy subtype 2 who each presented with daytime somnolence.

Patient 1 was a 49-year-old woman of normal weight in whom familial partial lipodystrophy subtype 2 had been diagnosed at age 30 years. She was 161 cm tall, her weight was 72.5 kg, and she had a body mass index of 27.9 kg/m2, a waist circumference of 88 cm and blood pressure of 145/88 mm Hg. Patient 2 was a 46-year-old woman of normal weight in whom the lipodystrophy had been diagnosed 1 year earlier. Her height was 155 cm, weight 59.9 kg, body mass index 25.9 kg/m2, waist circumference 86 cm and blood pressure 116/60 mm Hg. Both patients had reasonably well-controlled diabetes and dyslipidemia. Both were heterozygous for the LMNA R482Q mutation.4 The 2 women reported long-standing daytime somnolence and loud snoring at night but no witnessed episodes of obstructive sleep apnea. Neither had a history of allergies, cardiovascular disease or respiratory problems. Patient 1 had 6 female first-and second-degree relatives aged 40–60 years who had the LMNA R482Q mutation; patient 2 had 2 such relatives. None of these relatives had received a diagnosis of obstructive sleep apnea or had symptoms suggestive of it. Both patients had the classic familial partial lipodystrophy fat distribution, with no subcutaneous fat in the limbs and gluteal region, and increased facial, neck and central fat stores (Figure 1). Neither patient had acanthosis nigricans, hirsutism or hepatomegaly, and both had normal dentition, tongue size, pharynx and palate, including uvula and tonsils. In each case, examination of the eyes and of the respiratory, cardiovascular and neurologic systems yielded normal findings, as did resting and exercise electrocardiograms. Neither patient had thyromegaly or other neck masses felt clinically, and each had normal thyroid function, as assessed by laboratory testing.

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Figure 1: Top panels: T1-weighted cross-sectional magnetic resonance images at vertebral level C5 for patients 1 and 2 and an age-and sex-matched female control subject who did not have lipodystrophy. Subcutaneous neck fat was quantified in a compartment defined by the bracket and anterior to the rectilinear tangential line (dotted line) at the dorsal-most point of the paratracheal region. Bottom panels: corresponding T1-weighted magnetic resonance images of the whole body. Patients 1 and 2 were not obese; in fact in the lower body region (within the large bracket) they had a deficiency of subcutaneous fat compared with the control subject. However, patients 1 and 2 had excess intra-abdominal fat (region within the medium bracket) and neck fat (region within the small bracket) compared with the control subject.

Overnight polysomnography was performed according to standard protocols (www.sleeplaboratories.com/physician-5.htm#5-1). Patient 1's total sleep time was 332 minutes, with 32 apneic and hypopneic episodes. Patient 2's total sleep time was 391 minutes, with 36 apneic and hypopneic episodes. The apnea–hypopnea index was 5.8 for patient 1 and 5.5 for patient 2, values consistent with mild obstructive sleep apnea. All apneic and hypopneic events were considered to be obstructive rather than central events.

We used a semi-automated algorithm5 to quantify the subcutaneous fat in a compartment defined as the region of the neck anterior to the rectilinear tangential line at the dorsal-most point of the paratracheal region. The proportion of the area of the anterior compartment of the neck that was adipose tissue was 56.8%, 68.7% and 44.1% for patient 1, patient 2 and an age-and sex-matched healthy female control subject who had no lipodystrophy. Semi-automated quantification of subcutaneous fat5 from T1-weighted magnetic resonance images at vertebral level C5 showed that both patients had more than 1.6 times the adipose tissue content in the anterior compartment of the neck surrounding the trachea as compared with the control subject (Figure 1).

Sleep-disordered breathing in patients 1 and 2 was subsequently controlled with nightly continuous positive airway pressure of 10 and 5 cm H2O, respectively, administered by nasal mask. Both patients reported marked improvement in their symptoms.

Charcot–Marie–Tooth disease, another monogenic disorder, is also associated with obstructive sleep apnea,6 but the sleep apnea in lipodystrophy is not associated with neuropathy or muscle weakness. Furthermore, obstructive sleep apnea has been reported in patients with acquired lipodystrophy syndromes, specifically partial lipodystrophy associated with HIV infection treated with highly active antiretroviral drugs.7 No clear mechanism links familial partial lipodystrophy subtype 2 with obstructive sleep apnea, although both of the patients we have described were of normal weight but had markedly increased neck fat content, specifically in the region surrounding the trachea. This suggests that the association might be related to the repartitioning of adipose tissue that is characteristic of patients with this type of lipodystrophy.

Although the obstructive sleep apnea in these 2 cases may have been coincidental, it is important to note that neither of the patients was obese and each had clinically ascertained lipodystrophy. Anecdotally, we have heard of additional cases of sleep apnea in extended kindreds. A more systematic assessment of the presence of obstructive sleep apnea in people with familial partial lipodystrophy or other lipodystrophies would increase confidence in the possible mechanistic association of these conditions.

Footnotes

  • This article has been peer reviewed.

    Contributors: All of the authors contributed to the conception and design of the study or the acquisition or analysis and interpretation of data. All drafted or revised the article critically for important intellectual content and approved the final version to be published.

    Acknowledgements: Robert Hegele is supported by the Jacob J. Wolfe Distinguished Medical Research Chair, the Edith Schulich Vinet Canada Research Chair (Tier I) in Human Genetics, a Career Investigator award from the Heart and Stroke Foundation of Ontario, and operating grants from the Canadian Institutes for Health Research, the Heart and Stroke Foundation of Ontario, the Ontario Research Fund and by Genome Canada through the Ontario Genomics Institute.

    Competing interests: None declared.

REFERENCES

  1. 1.↵
    Redline S, Tishler PV. The genetics of sleep apnea. Sleep Med Rev 2000;4:583-602.
    OpenUrlCrossRefPubMed
  2. 2.↵
    Wolk R, Somers VK. Obesity-related cardiovascular disease: implications of obstructive sleep apnea. Diabetes Obes Metab 2006;8:250-60.
    OpenUrlCrossRefPubMed
  3. 3.↵
    Hegele RA. Monogenic forms of insulin resistance: apertures that expose the common metabolic syndrome. Trends Endocrinol Metab 2003;14:371-7.
    OpenUrlCrossRefPubMed
  4. 4.↵
    Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 2000;9:109-12.
    OpenUrlAbstract/FREE Full Text
  5. 5.↵
    Al-Attar SA, Pollex RL, Robinson JF, et al. Semi-automated segmentation and quantification of adipose tissue in calf and thigh by MRI: a preliminary study in patients with monogenic metabolic syndrome. BMC Med Imaging 2006;6:11.
    OpenUrlCrossRefPubMed
  6. 6.↵
    Dematteis M, Pepin JL, Jeanmart M, et al. Charcot–Marie–Tooth disease and sleep apnoea syndrome: a family study. Lancet 2001;357:267-72.
    OpenUrlCrossRefPubMed
  7. 7.↵
    Lo Re V III, Schutte-Rodin S, Kostman JR. Obstructive sleep apnoea among HIV patients. Int J STD AIDS 2006;17:614-20.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Canadian Medical Association Journal: 177 (7)
CMAJ
Vol. 177, Issue 7
25 Sep 2007
  • Table of Contents
  • Index by author

Article tools

Respond to this article
Print
Download PDF
Article Alerts
To sign up for email alerts or to access your current email alerts, enter your email address below:
Email Article

Thank you for your interest in spreading the word on CMAJ.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Obstructive sleep apnea in 2 women with familial partial lipodystrophy due to a heterozygous LMNA R482Q mutation
(Your Name) has sent you a message from CMAJ
(Your Name) thought you would like to see the CMAJ web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Obstructive sleep apnea in 2 women with familial partial lipodystrophy due to a heterozygous LMNA R482Q mutation
Robert A. Hegele, Salam A. Al-Attar, Brian K. Rutt
CMAJ Sep 2007, 177 (7) 743-745; DOI: 10.1503/cmaj.070135

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
‍ Request Permissions
Share
Obstructive sleep apnea in 2 women with familial partial lipodystrophy due to a heterozygous LMNA R482Q mutation
Robert A. Hegele, Salam A. Al-Attar, Brian K. Rutt
CMAJ Sep 2007, 177 (7) 743-745; DOI: 10.1503/cmaj.070135
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
    • Footnotes
    • REFERENCES
  • Figures & Tables
  • Responses
  • Metrics
  • PDF

Related Articles

  • Highlights of this issue
  • Dans ce numéro
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Self-harm among youth during the first 28 months of the COVID-19 pandemic in Ontario, Canada: a population-based study
  • Emergency department visits and hospital admissions for suicidal ideation, self-poisoning and self-harm among adolescents in Canada during the COVID-19 pandemic
  • Trends in hospital admissions for chronic obstructive pulmonary disease over 16 years in Canada
Show more Research

Similar Articles

Collections

  • Topics
    • Genetics
    • Sleep medicine

 

View Latest Classified Ads

Content

  • Current issue
  • Past issues
  • Collections
  • Sections
  • Blog
  • Podcasts
  • Alerts
  • RSS
  • Early releases

Information for

  • Advertisers
  • Authors
  • Reviewers
  • CMA Members
  • CPD credits
  • Media
  • Reprint requests
  • Subscribers

About

  • General Information
  • Journal staff
  • Editorial Board
  • Advisory Panels
  • Governance Council
  • Journal Oversight
  • Careers
  • Contact
  • Copyright and Permissions
CMAJ Group

Copyright 2023, CMA Impact Inc. or its licensors. All rights reserved. ISSN 1488-2329 (e) 0820-3946 (p)

All editorial matter in CMAJ represents the opinions of the authors and not necessarily those of the Canadian Medical Association or its subsidiaries.

To receive any of these resources in an accessible format, please contact us at CMAJ Group, 500-1410 Blair Towers Place, Ottawa ON, K1J 9B9; p: 1-888-855-2555; e: [email protected]

CMA Civility, Accessibility, Privacy

 

Powered by HighWire