Skip to main content

Main menu

  • Home
  • Content
    • Current issue
    • Past issues
    • Early releases
    • Collections
    • Sections
    • Blog
    • Infographics & illustrations
    • Podcasts
    • COVID-19 Articles
    • Obituary notices
  • Authors & Reviewers
    • Overview for authors
    • Submission guidelines
    • Submit a manuscript
    • Forms
    • Editorial process
    • Editorial policies
    • Peer review process
    • Publication fees
    • Reprint requests
    • Open access
    • Patient engagement
  • Members & Subscribers
    • Benefits for CMA Members
    • CPD Credits for Members
    • Subscribe to CMAJ Print
    • Subscription Prices
    • Obituary notices
  • Alerts
    • Email alerts
    • RSS
  • JAMC
    • À propos
    • Numéro en cours
    • Archives
    • Sections
    • Abonnement
    • Alertes
    • Trousse média 2023
    • Avis de décès
  • CMAJ JOURNALS
    • CMAJ Open
    • CJS
    • JAMC
    • JPN

User menu

Search

  • Advanced search
CMAJ
  • CMAJ JOURNALS
    • CMAJ Open
    • CJS
    • JAMC
    • JPN
CMAJ

Advanced Search

  • Home
  • Content
    • Current issue
    • Past issues
    • Early releases
    • Collections
    • Sections
    • Blog
    • Infographics & illustrations
    • Podcasts
    • COVID-19 Articles
    • Obituary notices
  • Authors & Reviewers
    • Overview for authors
    • Submission guidelines
    • Submit a manuscript
    • Forms
    • Editorial process
    • Editorial policies
    • Peer review process
    • Publication fees
    • Reprint requests
    • Open access
    • Patient engagement
  • Members & Subscribers
    • Benefits for CMA Members
    • CPD Credits for Members
    • Subscribe to CMAJ Print
    • Subscription Prices
    • Obituary notices
  • Alerts
    • Email alerts
    • RSS
  • JAMC
    • À propos
    • Numéro en cours
    • Archives
    • Sections
    • Abonnement
    • Alertes
    • Trousse média 2023
    • Avis de décès
  • Visit CMAJ on Facebook
  • Follow CMAJ on Twitter
  • Follow CMAJ on Pinterest
  • Follow CMAJ on Youtube
  • Follow CMAJ on Instagram
Research article

Incidence of neural tube defects in Ontario, 1986–1999

Enza Gucciardi, Mary-Anne Pietrusiak, Donna L. Reynolds and Jocelyn Rouleau
CMAJ August 06, 2002 167 (3) 237-240;
Enza Gucciardi
From *the University Health Network Women's Health Program, Toronto, Ont.; †the Durham Region Health Department, Whitby, Ont.; and ‡the Reproductive Health Section, Health Surveillance and Epidemiology Division, Health Canada, Ottawa, Ont.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mary-Anne Pietrusiak
From *the University Health Network Women's Health Program, Toronto, Ont.; †the Durham Region Health Department, Whitby, Ont.; and ‡the Reproductive Health Section, Health Surveillance and Epidemiology Division, Health Canada, Ottawa, Ont.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donna L. Reynolds
From *the University Health Network Women's Health Program, Toronto, Ont.; †the Durham Region Health Department, Whitby, Ont.; and ‡the Reproductive Health Section, Health Surveillance and Epidemiology Division, Health Canada, Ottawa, Ont.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jocelyn Rouleau
From *the University Health Network Women's Health Program, Toronto, Ont.; †the Durham Region Health Department, Whitby, Ont.; and ‡the Reproductive Health Section, Health Surveillance and Epidemiology Division, Health Canada, Ottawa, Ont.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Tables
  • Responses
  • Metrics
  • PDF
Loading

Abstract

Background: Prenatal screening and the promotion of folic acid intake could affect the incidence of neural tube defects (NTDs). We examined trends in the total NTD incidence, as detected in live births, stillbirths and therapeutic abortions, from 1986 to 1999 in Ontario.

Methods: To capture cases of NTDs we used data from the Canadian Congenital Anomalies Surveillance System and hospital data on therapeutic abortions. We calculated the total incidence of NTDs by combining the numbers of NTDs occurring in live births, stillbirths and therapeutic abortions.

Results: The total NTD incidence rate increased from 11.7 per 10 000 pregnancies in 1986 to 16.2 per 10 000 in 1995, and it subsequently decreased to 8.6 per 10 000 by 1999. The NTD birth rate (live births and stillbirths) decreased from 10.6 per 10 000 births in 1986 to 5.3 per 10 000 in 1999. The rate of therapeutic abortions with an NTD or hydrocephalus rose from 17.5 per 10 000 abortions in 1986 to 50.7 per 10 000 in 1995 and fell to 28.7 per 10 000 abortions in 1999.

Interpretation: The total NTD incidence rate increased from 1986 to 1995, probably because of increased prenatal screening and better detection of NTDs. The decline from 1995 to 1999 may have been due to increased folic acid intake among women at the time of conception.

Neural tube defects (NTDs) result in congenital malformations of the nervous system1 and may lead to spontaneous abortion, stillbirth, death in early infancy or a lifetime of disability.2 Studies of congenital anomalies in Alberta, Manitoba and Ontario showed a significant decline in NTD birth prevalence between 1979 and 1993.3 During that time, there was also an increased use of prenatal screening programs, which offer women and their families the option of terminating a pregnancy at high risk of having an NTD.4 Since a large proportion of NTD cases are detected prenatally through routine screening and may result in a therapeutic abortion,5,6,7,8 the NTD birth prevalence may be substantially reduced.7,8,9,10

Canadian,6,11 Australian,5 European9,12,13,14 and American7,15 studies have reported decreases in the birth prevalence of NTDs in their populations over the past decades, with most reporting either no change5,12,14 or a decline7,9,15 in total prevalence rates.

Surveillance systems that monitor only births affected by NTDs underestimate the overall incidence8,16 since they miss cases that are detected prenatally and terminated during pregnancy. Birth incidence rates may reflect differences in screening practices and diagnostic standards rather than the true incidence of NTD cases.

The Canadian Congenital Anomaly Surveillance System (CCASS) estimates birth defect incidence among live births and stillbirths, but it does not capture cases that are spontaneously or therapeutically aborted.3 Therefore we report the total incidence of NTDs in Ontario from 1986 to 1999 by combining data on live births and stillbirths with hospital data on therapeutic abortions.

Methods

The CCASS estimates the incidence of numerous congenital anomalies using hospital administration data from the Canadian Institute for Health Information (CIHI). CCASS methodologies are described elsewhere.16 The CCASS provided us with the number of NTD cases among live births and stillbirths occurring in Ontario hospitals from 1986 to 1999 as well as the total number of live births and stillbirths. Data on live births include data for infants admitted to hospital in the first year of life because of congenital anomalies, since not all anomalies are detected at birth. Health Canada, the administrator of the CCASS, applies an algorithm to remove duplicate records. We also analyzed the type of NTD, whether spina bifida (includes spina bifida with hydrocephalus), anencephaly or encephalocele.

Data on therapeutic abortions with an NTD or hydrocephalus occurring from 1986 to 1999 in Ontario were also based on CIHI hospital administration data, which we obtained through the Central East Health Information Partnership and the Ontario Ministry of Health and Long-Term Care. We defined the termination of pregnancies with NTDs or hydrocephalus as legally induced abortions performed in hospital (International Classification of Diseases, ninth revision [ICD-9] code 635) on an in-patient or day surgery basis in which a central nervous system malformation was identified in the fetus as anencephaly, hydrocephalus or spina bifida (ICD-9 code 655.0).17 Hydrocephalus may have been included in the ICD-9 code because it is more prevalent than encephalocele and is a common manifestation in anencephaly18 and spina bifida cases.19 Because we could not differentiate hydrocephalus from the NTDs in these data, we included hydrocephalus birth incidence rates in the analysis. The Ontario Ministry of Health and Long-Term Care also gave us the total number of therapeutic abortions performed in hospital. We did not include therapeutic abortions conducted in free-standing abortion clinics. We also made no attempt to capture data on spontaneous NTD abortions.

We computed the total NTD incidence rate by combining live births, stillbirths and therapeutic abortions in both numerator and denominator. The birth incidence rate included live births and stillbirths only. Appendix 1 summarizes how we calculated the rates.

We examined overall trends using a Poisson regression analysis for number of NTDs diagnosed per year (1986–1999), with year as a continuous, independent predictor variable.

Results

A total of 3207 NTDs occurred in Ontario from 1986 to 1999: 1503 detected in live births, 425 in stillbirths and 1279 in therapeutic abortions. The total NTD incidence rate increased by 38% from 1986 to 1995, from 11.7 to 16.2 per 10 000 pregnancies (p < 0.001); however, the rate dropped by 47% from 1995 to 1999, to 8.6 per 10 000 pregnancies (p < 0.001) (Fig. 1). The NTD birth incidence rate decreased by 50% from 1986 to 1999, from 10.6 to 5.3 per 10 000 births (p < 0.001) (Fig. 1); overall, 78% of the affected births were live births and 22% were stillbirths. There was no significant change in the hydrocephalus birth rate during the study period (Fig. 1).

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Fig. 1: Total incidence rates of neural tube defects (NDTs) and birth incidence rates of NTDs and hydrocephalus in Ontario, 1986–1999.

The rate of NTDs in live births declined by 50% during the study period, from 8.6 per 10 000 live births in 1986 to 4.3 per 10 000 live births in 1999 (p < 0.001) (Fig. 2). Most of the live births were cases of spina bifida (75%), the remainder being encephalocele (15%) and anencephaly (11%). The rate of spina bifida in live births decreased by 52% over time (p < 0.001); the rates of anencephaly and encephalocele decreased by 42% (p < 0.002) and 45% (p = 0.002) respectively.

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Fig. 2: Incidence rates of NTDs in live births, by type of NTD.

On average, 3.2% of all stillbirths were diagnosed with an NTD, as compared with 0.1% of all live births. The rate of stillbirths with an NTD dropped by 53%, from 33.6 per 1000 stillbirths in 1986 to 15.9 per 1000 in 1999 (p < 0.001) (Fig. 3). In contrast to live births, the most common NTD among stillbirths was anencephaly (57%); spina bifida accounted for 35% and encephalocele for 7% of affected stillbirths. Although stillbirth rates for anencephaly decreased significantly (by 60%, p < 0.001), spina bifida rates showed no significant change. Statistical tests for trend were not analyzed for encephalocele because of the small number of cases.

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Fig. 3: Incidence rates of NTDs in stillbirths, by type of NTD.

From 1986 to 1995 the rate of therapeutic abortions in which an NTD or hydrocephalus was detected rose 190%, from 17.5 to 50.7 per 10 000 abortions (p < 0.001). By 1999 it had fallen by 43%, to 28.7 per 10 000 abortions (p < 0.001) (Fig. 4). In 1999 the distribution of total NTDs was 42% live births, 10% stillbirths and 47% therapeutic abortions (Fig. 5). This was a shift from 1986, when the distribution was 61%, 15% and 25% respectively.

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Fig. 5: Distribution of live births, stillbirths and therapeutic abortions with NTDs.

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Fig. 4: Incidence rates of NTDs or hydrocephalus in therapeutic abortions.

Interpretation

We found that NTD rates detected at birth decreased from 1986 to 1999, with most of the decrease occurring after 1995. The rate of therapeutic abortions with an NTD or hydrocephalus increased from 1986 to 1995 but decreased from 1995 to 1999. In 1986 the ratio of NTD-affected births to therapeutic abortions was 3:1, as compared with 1:1 in 1999.

The increase in the rate of therapeutic abortions with an NTD or hydrocephalus and the subsequent decrease after 1995 may be explained by both artifactual and real influences. Artifactual explanations relate to data quality. The data on therapeutic abortions were problematic because the ICD-9 code 655.0 grouped anencephaly, spina bifida and hydrocephalus together rather than the standard NTD classification of anencephaly, spina bifida and encephalocele. Because the ICD-9 code included hydrocephalus rather than encephalocele, we may have calculated inflated rates of NTD-affected therapeutic abortions. However, the birth incidence of hydrocephalus remained constant over the 14-year study period, which may indicate a similar trend for the incidence of therapeutic abortions affected by hydrocephalus.

We examined data on only therapeutic abortions performed in hospitals owing to the lack of data on those with NTD or hydrocephalus performed in free-standing abortion clinics. It is unlikely that clinics perform many NTD-affected therapeutic abortions since the detection of NTDs usually occurs between 16 and 20 weeks' gestation.

An important consideration for data quality is case ascertainment, particularly if detection or reporting has changed over time. The CCASS uses hospital separation data to identify anomalies and determines the number of individual cases by internally linking the records to remove duplicates. Personal identifiers are removed from the records, which necessitates a probabilistic melding process that links the individual records using variables such as sex, date of birth and postal code. The process depends on complete information. Since NTDs are serious anomalies, few cases would escape hospitalization; however, it may be possible that hospital data have become more complete in recent years, resulting in more accurate identification of duplicates. The completeness of therapeutic abortion data, also based on hospital records, is more difficult to assess. In-depth research through methods such as chart review could provide insight into the quality of these data.

There are 2 recent influences that may explain the trends in NTD incidence rates: prenatal screening and use of folic acid. Prenatal screening is likely the main reason for the decreased rates of live births with an NTD and the increased rates of therapeutic abortions with NTD or hydrocephalus before 1996. The decrease after 1995 is consistent with the release of recommendations for folic acid use before conception by women of child-bearing years and the provision of related preconception education.20,21,22 In the late 1990s initiatives to promote folic acid use expanded, including activities by boards of health23,24 and fortification of flour and pasta in Canada in January 1998.25 It has been suggested that a decrease of 30% to 40% in the incidence of NTDs could be expected even with relatively low levels of fortification.26

Assessments of folic acid intake or serum folate concentrations would strengthen conclusions from this study. Additional research is needed to explore the effectiveness of strategies to promote folic acid use such as preconception education, supplementation, and fortification of flour and pasta. Standardized reporting of NTDs, including cases in therapeutic abortions, is needed to ensure that rates are interpreted correctly.

𝛃 See related articles pages 241 and 255

Appendix 1

View this table:
  • View inline
  • View popup
  • Download powerpoint

Appendix 1.

Footnotes

  • This article has been peer reviewed.

    Contributors: Ms. Gucciardi conducted the initial study as a practicum project for her MHSc in Community Health and Epidemiology; she conducted the literature review, collected and interpreted the data, and drafted the article. Ms. Pietrusiak supervised the practicum, contributed to the data collection and analysis, reviewed the methodology and contributed to the writing and revising of the article. Dr. Reynolds provided clinical input, reviewed the methodology, interpreted the data and edited the article. Mr. Rouleau provided data from the Canadian Congenital Anomalies Surveillance System, contributed to the data interpretation and reviewed the article.

    Acknowledgements: We thank the Central East Health Information Partnership for funding and assisting us with this project. We also appreciate the assistance of the Maternal Serum Screening Program at North York General Hospital, the Ontario Ministry of Health and Long-Term Care and Health Canada.

    Competing interests: None declared.

References

  1. 1.↵
    Moore KL. The developing human: clinically oriented embryology. 3rd ed. Philadelphia: W.B. Saunders Company; 1982. p. 385-403.
  2. 2.↵
    Infant health: measuring up. A health surveillance update on Canadian children and youth. Ottawa: Health Canada; 1999. Cat no H42-2/82-1999E.
  3. 3.↵
    Johnson KC, Rouleau J. Temporal trends in Canadian birth defects birth prevalence. Can J Public Health 1997;88(3):169-76.
    OpenUrlPubMed
  4. 4.↵
    Canadian Perinatal Surveillance System: induced abortion [fact sheet]. Ottawa: Health Canada; 1998.
  5. 5.↵
    Chan A, Robertson EF, Haan EA, Keane RJ, Ranieri E, Carney A. Prevalence of neural tube defects in South Australia, 1966–91: effectiveness and impact of prenatal diagnosis. BMJ 1993;307:703-6.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    DeWals P, Trochet C, Pinsonneault L. Prevalence of neural tube defects in the province of Quebec. Can J Public Health 1999;90:237-9.
    OpenUrlPubMed
  7. 7.↵
    Roberts HE, Moore CA, Cragan JD, Fernhoff PM, Khoury MJ. Impact of prenatal diagnosis on the birth prevalence of neural tube defects, Atlanta, 1990–1991. Pediatrics 1995;96(5):880-3.
    OpenUrlAbstract/FREE Full Text
  8. 8.↵
    Allen WP, Stevenson RE, Thompson SJ, Dean JH. The impact of prenatal diagnosis on NTD surveillance. Prenat Diagn 1996;16:531-5.
    OpenUrlCrossRefPubMed
  9. 9.↵
    Eurocat Working Group. Prevalence of neural tube defects in 20 regions of Europe and the impact of prenatal diagnosis, 1980–1986. J Epidemiol Community Health 1991;45:52-8.
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    Velie EM, Shaw GM. Impact of prenatal diagnosis and elective termination on prevalence and risk estimates of neural tube defects in California, 1989–1991. Am J Epidemiol 1996;144(5):473-9.
    OpenUrlAbstract/FREE Full Text
  11. 11.↵
    Evans JA, Chodirker BN, Harman C, MacDonald K. The impact of maternal serum alphafetoprotein screening on the birth prevalence of neural tube defects in Manitoba:1979–1990 [abstract]. Am J Hum Genet 1992;51:A267.
  12. 12.↵
    Morris JK, Wald NJ. Quantifying the decline in the birth prevalence of neural tube defects in England and Wales. J Med Screen 1999;6(4):182-5.
    OpenUrlAbstract/FREE Full Text
  13. 13.↵
    Alembik Y, Dott B, Roth MP, Stoll C. Prevalence of neural tube defects in northeastern France, 1979–1992: impact of prenatal diagnosis. Ann Genet 1995; 38(1):49-53.
    OpenUrlPubMed
  14. 14.↵
    Rankin J, Glinianaia S, Brown R, Renwick M. The changing prevalence of neural tube defects: a population-based study in the north of England, 1984–96. Paediatr Perinat Epidemiol 2000;14(2):104-10.
    OpenUrlCrossRefPubMed
  15. 15.↵
    Hendricks K, Simpson SJ, Russell DL. Neural tube defects along the Texas–Mexico border. Am J Epidemiol 1999;149:1119-27.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    Rouleau J, Arbuckle TE, Johnson, KC, Sherman GJ. Description and limitations of the Canadian Congenital Anomalies Surveillance System (CCASS). Chronic Dis Can 1995;16(1):37-42.
    OpenUrl
  17. 17.↵
    World Health Organization. International classification of diseases: 1975 revision. Geneva: The Organization; 1977. p. 356,367.
  18. 18.↵
    Sever LE, Strassburg MA. Epidemiologic aspects of neural tube defects. In: Mizejewski G, Porter IH, editors. Alpha-Fetoprotein and congenital disorders. Orlando (FA): Academic Press Inc; 1985. p. 243-62.
  19. 19.↵
    Forman R, Chou S, Koren G. The role of folic acid in preventing neural tube defects. Contemp Pediatr 1995;Aug:16-22.
  20. 20.↵
    MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 1991;338:131-7.
    OpenUrlCrossRefPubMed
  21. 21.↵
    Czeizel AE, Dudas I. Prevention of the first occurrence of neural tube defects by periconceptional vitamin supplementation. N Engl J Med 1992;327:32-5.
    OpenUrl
  22. 22.↵
    Wilson RD, Van Allen MI. The use of folic acid for the prevention of neural tube defects [policy statement 19]. Ottawa: Society of Obstetricians and Gynaecologists of Canada; 1993.
  23. 23.↵
    Mandatory and health services guidelines. Toronto: Ontario Ministry of Health; 1997. p. 39-41.
  24. 24.↵
    Van Allen MI, Fraser FC, Dallaire L, Allanson J, McLeod DR, Andermann E, et al. Recommendations on the use of folic acid supplementation to prevent the recurrence of neural tube defects. CMAJ 1993;149(9):1239-43.
    OpenUrlAbstract
  25. 25.↵
    Nutrition for a healthy pregnancy: national guidelines for the childbearing years. Ottawa: Health Canada; 1999. p. 28. Cat no H39-459/1999E.
  26. 26.↵
    Koren G. Folic acid and neural tube defects. Good news at last! Can Fam Physician 1999;45:2605-6.
    OpenUrlPubMed
PreviousNext
Back to top

In this issue

CMAJ
Vol. 167, Issue 3
6 Aug 2002
  • Table of Contents
  • Index by author

Article tools

Respond to this article
Print
Download PDF
Article Alerts
To sign up for email alerts or to access your current email alerts, enter your email address below:
Email Article

Thank you for your interest in spreading the word on CMAJ.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Incidence of neural tube defects in Ontario, 1986–1999
(Your Name) has sent you a message from CMAJ
(Your Name) thought you would like to see the CMAJ web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Incidence of neural tube defects in Ontario, 1986–1999
Enza Gucciardi, Mary-Anne Pietrusiak, Donna L. Reynolds, Jocelyn Rouleau
CMAJ Aug 2002, 167 (3) 237-240;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
‍ Request Permissions
Share
Incidence of neural tube defects in Ontario, 1986–1999
Enza Gucciardi, Mary-Anne Pietrusiak, Donna L. Reynolds, Jocelyn Rouleau
CMAJ Aug 2002, 167 (3) 237-240;
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Interpretation
    • Appendix 1
    • Footnotes
    • References
  • Figures & Tables
  • Responses
  • Metrics
  • PDF

Related Articles

  • Highlights of this issue
  • Incidence of open neural tube defects in Nova Scotia after folic acid fortification
  • Neural tube defects and periconceptional folic acid
  • PubMed
  • Google Scholar

Cited By...

  • Parity and the use of folic acid supplementation during pregnancy
  • Fortification and Health: Challenges and Opportunities
  • Folate bioavailability: implications for establishing dietary recommendations and optimizing status
  • Folic Acid Supplementation and Cancer Risk: Point
  • Very Low Oral Doses of Vitamin B-12 Increase Serum Concentrations in Elderly Subjects with Food-Bound Vitamin B-12 Malabsorption
  • Folate supplementation: too much of a good thing?
  • Trends in Serum Folate, RBC Folate, and Circulating Total Homocysteine Concentrations in the United States: Analysis of Data from National Health and Nutrition Examination Surveys, 1988-1994, 1999-2000, and 2001-2002
  • Will mandatory folic acid fortification prevent or promote cancer?
  • Role of Folate in Colon Cancer Development and Progression
  • Folic Acid Supplements and Fortification Affect the Risk for Neural Tube Defects, Vascular Disease and Cancer: Evolving Science,
  • Neural tube defects and periconceptional folic acid
  • Google Scholar

More in this TOC Section

  • Falsely elevated point-of-care lactate measurement after ingestion of ethylene glycol
  • Severe necrotizing pancreatitis following combined hepatitis A and B vaccination
  • Can hockey playoffs harm your hearing?
Show more Research article

Similar Articles

Collections

  • Topics
    • Maternal-fetal medicine
    • Reproductive health, infertility & pregnancy

 

View Latest Classified Ads

Content

  • Current issue
  • Past issues
  • Collections
  • Sections
  • Blog
  • Podcasts
  • Alerts
  • RSS
  • Early releases

Information for

  • Advertisers
  • Authors
  • Reviewers
  • CMA Members
  • CPD credits
  • Media
  • Reprint requests
  • Subscribers

About

  • General Information
  • Journal staff
  • Editorial Board
  • Advisory Panels
  • Governance Council
  • Journal Oversight
  • Careers
  • Contact
  • Copyright and Permissions
  • Accessibiity
  • CMA Civility Standards
CMAJ Group

Copyright 2023, CMA Impact Inc. or its licensors. All rights reserved. ISSN 1488-2329 (e) 0820-3946 (p)

All editorial matter in CMAJ represents the opinions of the authors and not necessarily those of the Canadian Medical Association or its subsidiaries.

To receive any of these resources in an accessible format, please contact us at CMAJ Group, 500-1410 Blair Towers Place, Ottawa ON, K1J 9B9; p: 1-888-855-2555; e: cmajgroup@cmaj.ca

Powered by HighWire