Skip to main content

Main menu

  • Home
  • COVID-19
    • Articles & podcasts
    • Blog posts
    • Collection
    • News
  • Content
    • Current issue
    • Past issues
    • Early releases
    • Collections
    • Sections
    • Blog
    • Infographics & illustrations
    • Podcasts
  • Authors
    • Overview for authors
    • Submission guidelines
    • Submit a manuscript
    • Forms
    • Editorial process
    • Editorial policies
    • Peer review process
    • Publication fees
    • Reprint requests
  • CMA Members
    • Overview for members
    • Earn CPD Credits
    • Print copies of CMAJ
    • Career Ad Discount
  • Subscribers
    • General information
    • View prices
  • Alerts
    • Email alerts
    • RSS
  • JAMC
    • À propos
    • Numéro en cours
    • Archives
    • Sections
    • Abonnement
    • Alertes
    • Trousse média 2021
  • CMAJ JOURNALS
    • CMAJ Open
    • CJS
    • JAMC
    • JPN

User menu

Search

  • Advanced search
CMAJ
  • CMAJ JOURNALS
    • CMAJ Open
    • CJS
    • JAMC
    • JPN
CMAJ

Advanced Search

  • Home
  • COVID-19
    • Articles & podcasts
    • Blog posts
    • Collection
    • News
  • Content
    • Current issue
    • Past issues
    • Early releases
    • Collections
    • Sections
    • Blog
    • Infographics & illustrations
    • Podcasts
  • Authors
    • Overview for authors
    • Submission guidelines
    • Submit a manuscript
    • Forms
    • Editorial process
    • Editorial policies
    • Peer review process
    • Publication fees
    • Reprint requests
  • CMA Members
    • Overview for members
    • Earn CPD Credits
    • Print copies of CMAJ
    • Career Ad Discount
  • Subscribers
    • General information
    • View prices
  • Alerts
    • Email alerts
    • RSS
  • JAMC
    • À propos
    • Numéro en cours
    • Archives
    • Sections
    • Abonnement
    • Alertes
    • Trousse média 2021
  • Visit CMAJ on Facebook
  • Follow CMAJ on Twitter
  • Follow CMAJ on Pinterest
  • Follow CMAJ on Youtube
  • Follow CMAJ on Instagram
Commentary

Missing the point (estimate)? Confidence intervals for the number needed to treat

Nicholas J. Barrowman
CMAJ June 25, 2002 166 (13) 1676-1677;
Nicholas J. Barrowman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Tables
  • Metrics
  • Responses
  • PDF
Loading

The number needed to treat, that is, the average number of patients a clinician needs to treat with a particular therapy to prevent one bad outcome,1 is a translation into clinical terms of the absolute risk reduction derived from a trial. Most clinicians are aware that very small absolute risk reductions translate into large numbers needed to treat, which often helps them to distinguish statistically significant from clinically significant results. For example, in a letter in this issue (page 1652),2 David Gladstone and colleagues use point estimates of the number needed to treat to demonstrate the benefit of tissue plasminogen activator (tPA) in the treatment of stroke. A point estimate represents the single most plausible value in light of the observed data. However the data will generally be consistent with a whole range of values. Along with a point estimate, it is informative to provide a confidence interval reflecting the range of plausible values — and ruling out values outside this range. But the interpretation of confidence intervals for the number needed to treat has some subtleties, and incorrect confidence intervals for the number needed to treat have often been reported.3

The number needed to treat is computed as the reciprocal of the absolute risk reduction. For example, Gladstone and colleagues presented the absolute risk reduction for patients with moderate baseline stroke severity (National Institutes of Health Stroke Scale [NIHSS] between 6 and 10) as being 16.6%. The number needed to treat is thus 1/0.166 or approximately 6. This benefit was statistically significant: the 95% confidence interval for the absolute risk reduction was 0.9%–32.2%. A 95% confidence interval for the number needed to treat is 1/0.009 to 1/0.322 or approximately 3.1–111.1 (Note that taking the reciprocal reverses the order of the limits of the confidence interval.)

This all seems quite straightforward, that is, until we try the calculation for a nonsignificant result, for example, for patients with low baseline stroke severity (NIHSS score between 0 and 5). The absolute risk reduction was 6.6% with a 95% confidence interval of –20.9% to 34.1%. Naively taking reciprocals gives a number needed to treat of about 15.2 and an apparent 95% confidence interval of –4.8 to 2.9, which does not seem to include 15.2! Clearly something's afoot.

To understand the source of the confusion, note first that the lower limit of the confidence interval for the absolute risk reduction is negative, because the data do not rule out the possibility that tPA is actually harmful for this group of patients. The reciprocal of this lower limit is –4.8, or a “number needed to harm” of 4.8. Altman has suggested that a better description of positive and negative values of the number needed to treat would be the “number needed to treat for one additional patient to benefit (or be harmed),” or NNTB and NNTH respectively.3 The 95% confidence interval for the absolute risk reduction thus extends from a NNTH of 4.8 at one extreme to a NNTB of 2.9 at the other.

To understand what such a confidence interval covers, imagine for a moment that the absolute risk reduction had only just been significant, with a confidence interval extending from slightly more than 0% to 34.1%. The confidence interval for the number needed to treat would now extend from 2.9 to something approaching infinity, denoted ∞. This would indicate that, according to the data, for one additional patient to benefit, a clinician would need to treat at least 2.9 patients (the reciprocal of 34.1%), but perhaps an extremely large number of patients. Thus, when a confidence interval for an absolute risk reduction overlaps zero, the corresponding confidence interval for the number needed to treat includes ∞. This explains the confusion in the case of the patients with low baseline stroke severity: the 95% confidence interval does, after all, contain the point estimate (Fig. 1). Following Altman's suggestion, the estimated number needed to treat and its confidence interval can be quoted as NNTB = 15.2 (95% confidence interval NNTH 4.8 to ∞ to NNTB 2.9). In other words, for this group of patients, it could be that, on average, treating as few as 3 patients with tPA would result in one additional patient benefiting. On the other hand, it could be that, on average, treating as few as 5 patients with tPA would result in one additional patient being harmed.

Figure1
  • Download figure
  • Open in new tab
  • Download powerpoint

Fig. 1: Confidence intervals for absolute risk reduction and number needed to treat for benefit (NNTB) or harm (NNTH) for patients with low baseline stroke severity. Data from Gladstone et al. 2

The use of the number needed to treat is not without its drawbacks. Its statistical properties are problematic4,5 and its appropriate application in meta-analysis requires considerable care.6 Particularly with small samples, the commonly used formula for the confidence interval of the absolute risk reduction can give poor results,7 which can have an enormous impact when transformed to the number-needed-to-treat scale. Recently, the use of more refined confidence intervals for the absolute risk reduction has been recommended for obtaining confidence intervals for the number needed to treat.8

It is important to remember that a nonsignificant number needed to treat will have a confidence interval with 2 parts, one allowing for the possibility that the treatment is actually harmful, and the other for the possibility that the treatment is beneficial. Published confidence intervals for the number needed to treat have sometimes included only one of these parts.

CMAJ recommends that when authors express results in terms of the number needed to treat, point estimates for nonsignificant numbers needed to treat should be accompanied by confidence intervals using Altman's notation,3 as described in this commentary.

Footnotes

  • This article has been peer reviewed.

    Competing interests: None declared.

References

  1. 1.↵
    Cook RJ, Sackett DL. The number needed to treat: a clinically useful measure of treatment effect [published erratum appears in BMJ 1995;310(6986): 1056]. BMJ 1995;310(6977):452-4.
    OpenUrlFREE Full Text
  2. 2.↵
    Gladstone DJ, Hill MD, Black SE. tPA for acute stroke: balancing baseline imbalances [letter]. CMAJ 2002;166(13):1652-3. Available: www .cmaj .ca /cgi /content /full/166/13/1652
    OpenUrlFREE Full Text
  3. 3.↵
    Altman DG. Confidence intervals for the number needed to treat. BMJ 1998; 317 (7168): 1309-12.
    OpenUrlFREE Full Text
  4. 4.↵
    Hutton JL. Number needed to treat: properties and problems. J R Stat Soc Ser A Stat Soc 2000;163:403-15.
    OpenUrl
  5. 5.↵
    Lesaffre E, Pledger G. A note on the number needed to treat. Control Clin Trials 1999;20(5):439-47.
    OpenUrlCrossRefPubMed
  6. 6.↵
    Smeeth L, Haines A, Ebrahim S. Numbers needed to treat derived from meta-analyses — sometimes informative, usually misleading. BMJ 1999; 318 (7197): 1548-51.
    OpenUrlFREE Full Text
  7. 7.↵
    Newcombe RG. Interval estimation for the difference between independent proportions: comparison of eleven methods. Stat Med 1998;17(8):873-90.
    OpenUrlCrossRefPubMed
  8. 8.↵
    Bender R. Calculating confidence intervals for the number needed to treat. Control Clin Trials 2001;22(2):102-10.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

CMAJ
Vol. 166, Issue 13
25 Jun 2002
  • Table of Contents
  • Index by author

Article tools

Respond to this article
Print
Download PDF
Article Alerts
To sign up for email alerts or to access your current email alerts, enter your email address below:
Email Article

Thank you for your interest in spreading the word on CMAJ.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Missing the point (estimate)? Confidence intervals for the number needed to treat
(Your Name) has sent you a message from CMAJ
(Your Name) thought you would like to see the CMAJ web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Missing the point (estimate)? Confidence intervals for the number needed to treat
Nicholas J. Barrowman
CMAJ Jun 2002, 166 (13) 1676-1677;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
‍ Request Permissions
Share
Missing the point (estimate)? Confidence intervals for the number needed to treat
Nicholas J. Barrowman
CMAJ Jun 2002, 166 (13) 1676-1677;
Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Footnotes
    • References
  • Figures & Tables
  • Responses
  • Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • A randomized, double-blind, placebo-controlled noninferiority trial of amoxicillin for clinically diagnosed acute otitis media in children 6 months to 5 years of age
  • Google Scholar

More in this TOC Section

  • Implementing digital passports for SARS-CoV-2 immunization in Canada
  • Canada’s provinces and territories should disclose cannabis data to support research
  • Pregnancy, breastfeeding and the SARS-CoV-2 vaccine: an ethics-based framework for shared decision-making
Show more Commentary

Similar Articles

Collections

  • Topics
    • Research methods & statistics

Content

  • Current issue
  • Past issues
  • Collections
  • Sections
  • Blog
  • Podcasts
  • Alerts
  • RSS
  • Early releases

Information for

  • Advertisers
  • Authors
  • Reviewers
  • CMA Members
  • Media
  • Reprint requests
  • Subscribers

About

  • General Information
  • Journal staff
  • Editorial Board
  • Governance Council
  • Journal Oversight
  • Careers
  • Contact
  • Copyright and Permissions

Copyright 2021, CMA Joule Inc. or its licensors. All rights reserved. ISSN 1488-2329 (e) 0820-3946 (p)

All editorial matter in CMAJ represents the opinions of the authors and not necessarily those of the Canadian Medical Association or its subsidiaries.

To receive any of the resources on this site in an accessible format, please contact us at cmajgroup@cmaj.ca.

Powered by HighWire