Dietary calcium and serum 25-hydroxyvitamin D status in relation to BMD among U.S. adults

J Bone Miner Res. 2009 May;24(5):935-42. doi: 10.1359/jbmr.081242.

Abstract

A higher calcium intake is still the primary recommendation for the prevention of osteoporosis, whereas vitamin D deficiency is often not addressed. To study the relative importance of dietary calcium intake and serum 25-hydroxyvitamin D [25(OH)D] status in regard to hip BMD, 4958 community-dwelling women and 5003 men >/=20 yr of age from the U.S. NHANES III population-based survey were studied. Calcium supplement users and individuals with a prior radius or hip fracture were excluded. We calculated standardized means for BMD by quartiles of sex-specific calcium intake for three 25(OH)D categories (<50, 50-74, and 75+ nM) among men and women, separately controlling for other important predictors of BMD. A higher calcium intake was significantly associated with higher BMD (p value for trend: p = 0.005) only for women with 25(OH)D status <50 nM, whereas calcium intake beyond the upper end of the lowest quartile (>566 mg/d) was not significantly associated with BMD at 25(OH)D concentrations >50 nM. Among men, there was no significant association between a higher calcium intake beyond the upper end of the lowest quartile (626 mg/d) and BMD within all 25(OH)D categories. Among both sexes, BMD increased stepwise and significantly with higher 25(OH)D concentrations (<50, 50-74, 75+ nM; p value for trend: women < 0.0001; men = 0.0001). Among men and women, 25(OH)D status seems to be the dominant predictor of BMD relative to calcium intake. Only women with 25(OH)D concentrations <50 nM seem to benefit from a higher calcium intake.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Bone Density / physiology*
  • Calcium, Dietary / administration & dosage*
  • Diet / statistics & numerical data
  • Female
  • Hip / physiology
  • Humans
  • Male
  • Middle Aged
  • United States
  • Vitamin D / analogs & derivatives*
  • Vitamin D / blood

Substances

  • Calcium, Dietary
  • Vitamin D
  • 25-hydroxyvitamin D