Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intravenous immunoglobulin therapy in rheumatic diseases

Abstract

Prepared from the collective plasma of several thousand people, therapeutic intravenous immunoglobulin (IVIg) consists mostly of human polyspecific IgG. In addition to its use in primary and secondary immune deficiencies, IVIg is used in the treatment of several rheumatic conditions, including Kawasaki disease, dermatomyositis and antineutrophil cytoplasmic antibody (ANCA)-positive vasculitis. In these diseases, IVIg therapy generally involves the use of 2 g/kg administered over either 2 or 5 consecutive days. However, dosage regimens have not been thoroughly explored, and indications for IVIg in most rheumatic diseases, such as systemic lupus erythematosus, polymyositis and catastrophic antiphospholipid syndrome, derive from its off-label usage. Randomized clinical trials are warranted to support the evidence-based use of IVIg, and to identify the ideal administration protocols to maximize the benefits of what is a limited resource. Further research to improve the therapeutic application of IVIg relies essentially on the conception of next-generation immunoglobulin preparations and optimization of combined therapies with immunomodulatory drugs and biologic agents.

Key Points

  • Intravenous immunoglobulin (IVIg)—polyspecific IgG extracted from the plasma of >1,000 healthy blood donors—is used to treat autoimmune and systemic inflammatory diseases including several rheumatic conditions

  • At present, 2 g/kg IVIg administered over either 2 or 5 consecutive days is the commonly practiced regimen, but a proper evidence base for this dosage is lacking

  • Randomized clinical trials are warranted for identifying the optimum dose regimen, frequency of administration and window of treatment, and to support the evidence-based use of IVIg in off-label indications

  • Preliminary studies suggest that a subcutaneous route of administration of immunoglobulin (SCIg) presents with practical advantages compared with IVIg

  • More information about the mechanisms of action of IVIg might enable the rational use of particular IVIg (or SCIg) preparations in rheumatic diseases

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pharmacokinetics of IVIg.

Similar content being viewed by others

References

  1. Kazatchkine, M. D. & Kaveri, S. V. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N. Engl. J. Med. 345, 747–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Galeotti, C., Bayry, J., Kone-Paut, I. & Kaveri, S. V. Kawasaki disease: aetiopathogenesis and therapeutic utility of intravenous immunoglobulin. Autoimmun. Rev. 9, 441–448 (2010).

  3. Kato, H. et al. Long-term consequences of Kawasaki disease. A 10- to 21-year follow-up study of 594 patients. Circulation 94, 1379–1385 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Burns, J. C. et al. Genetic variations in the receptor-ligand pair CCR5 and CCL3L1 are important determinants of susceptibility to Kawasaki disease. J. Infect. Dis. 192, 344–349 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Newburger, J. W. et al. A single intravenous infusion of γ-globulin as compared with four infusions in the treatment of acute Kawasaki syndrome. N. Engl. J. Med. 324, 1633–1639 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Oates-Whitehead, R. M. et al. Intravenous immunoglobulin for the treatment of Kawasaki disease in children. Cochrane Database of Systematic Reviews, Issue 4. Art. No.:CD004000. doi: 10.1002/14651858.CD004000 (2003).

  7. Gupta, M. et al. Cytokine modulation with immune γ-globulin in peripheral blood of normal children and its implications in Kawasaki disease treatment. J. Clin. Immunol. 21, 193–199 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, C. L. et al. Expression of CD40 ligand on CD4+ T-cells and platelets correlated to the coronary artery lesion and disease progress in Kawasaki disease. Pediatrics 111, E140–E147 (2003).

    Article  PubMed  Google Scholar 

  9. Abe, J. et al. Gene expression profiling of the effect of high-dose intravenous Ig in patients with Kawasaki disease. J. Immunol. 174, 5837–5845 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Sakaguchi, S., Miyara, M., Costantino, C. M. & Hafler, D. A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 10, 490–500 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Andre, S., Tough, D. F., Lacroix-Desmazes, S., Kaveri, S. V. & Bayry, J. Surveillance of antigen-presenting cells by CD4+ CD25+ regulatory T cells in autoimmunity: immunopathogenesis and therapeutic implications. Am. J. Pathol. 174, 1575–1587 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Esensten, J. H., Wofsy, D. & Bluestone, J. A. Regulatory T cells as therapeutic targets in rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 560–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bayry, J. Autoimmunity: CTLA-4: a key protein in autoimmunity. Nat. Rev. Rheumatol. 5, 244–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Annunziato, F., Cosmi, L., Liotta, F., Maggi, E. & Romagnani, S. Type 17 T helper cells—origins, features and possible roles in rheumatic disease. Nat. Rev. Rheumatol. 5, 325–331 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Olivito, B. et al. Defective FOXP3 expression in patients with acute Kawasaki disease and restoration by intravenous immunoglobulin therapy. Clin. Exp. Rheumatol. 28 (Suppl. 57), 93–97 (2010).

    PubMed  Google Scholar 

  16. Jia, S., Li, C., Wang, G., Yang, J. & Zu, Y. The T helper type 17/regulatory T cell imbalance in patients with acute Kawasaki disease. Clin. Exp. Immunol. 162, 131–137 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ephrem, A. et al. Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood 111, 715–722 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Kessel, A. et al. Intravenous immunoglobulin therapy affects T regulatory cells by increasing their suppressive function. J. Immunol. 179, 5571–5575 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Maddur, M. S. et al. Inhibition of differentiation, amplification and function of human TH17 cells by intravenous immunoglobulin. J. Allergy Clin. Immunol. 127, 823–830 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Orange, J. S. et al. Use of intravenous immunoglobulin in human disease: a review of evidence by members of the Primary Immunodeficiency Committee of the American Academy of Allergy, Asthma and Immunology. J. Allergy Clin. Immunol. 117 (Suppl.), S525–S553 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Tremoulet, A. H. et al. Resistance to intravenous immunoglobulin in children with Kawasaki disease. J. Pediatr. 153, 117–121 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abe, J. et al. Elevated granulocyte colony-stimulating factor levels predict treatment failure in patients with Kawasaki disease. J. Allergy Clin. Immunol. 122, 1008–1013 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Fury, W. et al. Transcript abundance patterns in Kawasaki disease patients with intravenous immunoglobulin resistance. Hum. Immunol. 71, 865–873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burns, J. C. et al. Infliximab treatment for refractory Kawasaki syndrome. J. Pediatr. 146, 662–667 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Rider, L. G. & Miller, F. W. Classification and treatment of the juvenile idiopathic inflammatory myopathies. Rheum. Dis. Clin. North Am. 23, 619–655 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Massa, M. et al. Self epitopes shared between human skeletal myosin and Streptococcus pyogenes M5 protein are targets of immune responses in active juvenile dermatomyositis. Arthritis Rheum. 46, 3015–3025 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Sansome, A. & Dubowitz, V. Intravenous immunoglobulin in juvenile dermatomyositis—four year review of nine cases. Arch. Dis. Child. 72, 25–28 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Al-Mayouf, S. M., Laxer, R. M., Schneider, R., Silverman, E. D. & Feldman, B. M. Intravenous immunoglobulin therapy for juvenile dermatomyositis: efficacy and safety. J. Rheumatol. 27, 2498–2503 (2000).

    CAS  PubMed  Google Scholar 

  29. Donofrio, P. D. et al. Consensus statement: the use of intravenous immunoglobulin in the treatment of neuromuscular conditions report of the AANEM ad hoc committee. Muscle Nerve 40, 890–900 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Prieur, A. M. et al. High dose immunoglobulin therapy in severe juvenile chronic arthritis: long-term follow-up in 16 patients. Clin. Exp. Rheumatol. 8, 603–608 (1990).

    CAS  PubMed  Google Scholar 

  31. Silverman, E. D. et al. Intravenous γ globulin therapy in systemic juvenile rheumatoid arthritis. Arthritis Rheum. 33, 1015–1022 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Silverman, E. D. et al. Intravenous immunoglobulin in the treatment of systemic juvenile rheumatoid arthritis: a randomized placebo controlled trial. Pediatric Rheumatology Collaborative Study Group. J. Rheumatol. 21, 2353–2358 (1994).

    CAS  PubMed  Google Scholar 

  33. Taylor, P. C. & Feldmann, M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 578–582 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Santmyire-Rosenberger, B. & Dugan, E. M. Skin involvement in dermatomyositis. Curr. Opin. Rheumatol. 15, 714–722 (2003).

    Article  PubMed  Google Scholar 

  35. Dalakas, M. C. Immunotherapy of myositis: issues, concerns and future prospects. Nat. Rev. Rheumatol. 6, 129–137 (2010).

    Article  PubMed  Google Scholar 

  36. Page, G., Chevrel, G. & Miossec, P. Anatomic localization of immature and mature dendritic cell subsets in dermatomyositis and polymyositis: interaction with chemokines and TH1 cytokine-producing cells. Arthritis Rheum. 50, 199–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Grundtman, C., Malmstrom, V. & Lundberg, I. E. Immune mechanisms in the pathogenesis of idiopathic inflammatory myopathies. Arthritis Res. Ther. 9, 208 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dalakas, M. C. et al. A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis. N. Engl. J. Med. 329, 1993–2000 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Amemiya, K., Semino-Mora, C., Granger, R. P. & Dalakas, M. C. Downregulation of TGF-β1 mRNA and protein in the muscles of patients with inflammatory myopathies after treatment with high-dose intravenous immunoglobulin. Clin. Immunol. 94, 99–104 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Raju, R. & Dalakas, M. C. Gene expression profile in the muscles of patients with inflammatory myopathies: effect of therapy with IVIg and biological validation of clinically relevant genes. Brain 128, 1887–1896 (2005).

    Article  PubMed  Google Scholar 

  41. Basta, M. & Dalakas, M. C. High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments. J. Clin. Invest. 94, 1729–1735 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barbasso Helmers, S. et al. Limited effects of high-dose intravenous immunoglobulin (IVIG) treatment on molecular expression in muscle tissue of patients with inflammatory myopathies. Ann. Rheum. Dis. 66, 1276–1283 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Tournadre, A. et al. TH1 and TH17 balance in inflammatory myopathies: interaction with dendritic cells and possible link with response to high-dose immunoglobulins. Cytokine 46, 297–301 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Elovaara, I. et al. EFNS guidelines for the use of intravenous immunoglobulin in treatment of neurological diseases: EFNS task force on the use of intravenous immunoglobulin in treatment of neurological diseases. Eur. J. Neurol. 15, 893–908 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Marie, I. et al. Intravenous immunoglobulins for steroid-refractory esophageal involvement related to polymyositis and dermatomyositis: a series of 73 patients. Arthritis Care Res. (Hoboken) 62, 1748–1755 (2010).

    Article  CAS  Google Scholar 

  46. Joseph, A. et al. Immunologic rheumatic disorders. J. Allergy Clin. Immunol. 125 (Suppl. 2), S204–S215 (2010).

    Article  PubMed  Google Scholar 

  47. Cherin, P. et al. Efficacy of intravenous γ-globulin therapy in chronic refractory polymyositis and dermatomyositis: an open study with 20 adult patients. Am. J. Med. 91, 162–168 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Cherin, P. et al. Results and long-term followup of intravenous immunoglobulin infusions in chronic, refractory polymyositis: an open study with thirty-five adult patients. Arthritis Rheum. 46, 467–474 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Dalakas, M. C. et al. Treatment of inclusion-body myositis with IVIg: a double-blind, placebo-controlled study. Neurology 48, 712–716 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Walter, M. C. et al. High-dose immunoglobulin therapy in sporadic inclusion body myositis: a double-blind, placebo-controlled study. J. Neurol. 247, 22–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, M. & Kallenberg, C. G. ANCA-associated vasculitides—advances in pathogenesis and treatment. Nat. Rev. Rheumatol. 6, 653–664 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Richter, C. et al. Treatment of anti-neutrophil cytoplasmic antibody (ANCA)-associated systemic vasculitis with high-dose intravenous immunoglobulin. Clin. Exp. Immunol. 101, 2–7 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jayne, D. R. et al. Intravenous immunoglobulin for ANCA-associated systemic vasculitis with persistent disease activity. QJM 93, 433–439 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Martinez, V. et al. Intravenous immunoglobulins for relapses of systemic vasculitides associated with antineutrophil cytoplasmic autoantibodies: results of a multicenter, prospective, open-label study of twenty-two patients. Arthritis Rheum. 58, 308–317 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Rahman, A. & Isenberg, D. A. Systemic lupus erythematosus. N. Engl. J. Med. 358, 929–939 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Charles, N., Hardwick, D., Daugas, E., Illei, G. G. & Rivera, J. Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nat. Med. 16, 701–707 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Crispín, J. C. et al. Pathogenesis of human systemic lupus erythematosus: recent advances. Trends Mol. Med. 16, 47–57 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kaveri, S. V., Mouthon, L. & Bayry, J. Basophils and nephritis in lupus. N. Engl. J. Med. 363, 1080–1082 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Crispín, J. C., Kyttaris, V. C., Terhorst, C. & Tsokos, G. C. T cells as therapeutic targets in SLE. Nat. Rev. Rheumatol. 6, 317–325 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Toubi, E., Kessel, A. & Shoenfeld, Y. High-dose intravenous immunoglobulins: an option in the treatment of systemic lupus erythematosus. Hum. Immunol. 66, 395–402 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Micheloud, D., Calderón, M., Caparrros, M. & D'Cruz, D. P. Intravenous immunoglobulin therapy in severe lupus myocarditis: good outcome in three patients. Ann. Rheum. Dis. 66, 986–987 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boletis, J. N., Ioannidis, J. P., Boki, K. A. & Moutsopoulos, H. M. Intravenous immunoglobulin compared with cyclophosphamide for proliferative lupus nephritis. Lancet 354, 569–570 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Shoenfeld, Y. et al. Efficacy of IVIg affinity-purified anti-double-stranded DNA anti-idiotypic antibodies in the treatment of an experimental murine model of systemic lupus erythematosus. Int. Immunol. 14, 1303–1311 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Nikolova, K. A., Tchorbanov, A. I., Djoumerska-Alexieva, I. K., Nikolova, M. & Vassilev, T. L. Intravenous immunoglobulin up-regulates the expression of the inhibitory FcγIIB receptor on B cells. Immunol. Cell Biol. 87, 529–533 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Tha-In, T., Bayry, J., Metselaar, H. J., Kaveri, S. V. & Kwekkeboom, J. Modulation of the cellular immune system by intravenous immunoglobulin. Trends Immunol. 29, 608–615 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Seite, J. F., Shoenfeld, Y., Youinou, P. & Hillion, S. What is the contents of the magic draft IVIg? Autoimmun. Rev. 7, 435–439 (2008).

    Article  PubMed  Google Scholar 

  67. Bayry, J. et al. Intravenous immunoglobulin abrogates dendritic cell differentiation induced by interferon-α present in serum from patients with systemic lupus erythematosus. Arthritis Rheum. 48, 3497–3502 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Espinosa, G. & Cervera, R. Antiphospholipid syndrome: frequency, main causes and risk factors of mortality. Nat. Rev. Rheumatol. 6, 296–300 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Carreras, L. D., Perez, G. N., Vega, H. R. & Casavilla, F. Lupus anticoagulant and recurrent fetal loss: successful treatment with γ-globulin. Lancet 2, 393–394 (1988).

    Article  CAS  PubMed  Google Scholar 

  70. Branch, D. W. et al. A multicenter, placebo-controlled pilot study of intravenous immune globulin treatment of antiphospholipid syndrome during pregnancy. The Pregnancy Loss Study Group. Am. J. Obstet. Gynecol. 182, 122–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Hsiao, G. R., Wolf, R. E. & Kimpel, D. L. Intravenous immunoglobulin to prevent recurrent thrombosis in the antiphospholipid syndrome. J. Clin. Rheumatol. 7, 336–339 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Blank, M. et al. The efficacy of specific IVIg anti-idiotypic antibodies in antiphospholipid syndrome (APS): trophoblast invasiveness and APS animal model. Int. Immunol. 19, 857–865 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Pierangeli, S. S., Espinola, R., Liu, X., Harris, E. N. & Salmon, J. E. Identification of an Fc γ receptor-independent mechanism by which intravenous immunoglobulin ameliorates antiphospholipid antibody-induced thrombogenic phenotype. Arthritis Rheum. 44, 876–883 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Sher, G. et al. The selective use of heparin/aspirin therapy, alone or in combination with intravenous immunoglobulin G, in the management of antiphospholipid antibody-positive women undergoing in vitro fertilization. Am. J. Reprod. Immunol. 40, 74–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Vora, S. K., Asherson, R. A. & Erkan, D. Catastrophic antiphospholipid syndrome. J. Intensive Care Med. 21, 144–159 (2006).

    Article  PubMed  Google Scholar 

  76. Cervera, R. et al. Catastrophic antiphospholipid syndrome (CAPS): descriptive analysis of a series of 280 patients from the “CAPS Registry”. J. Autoimmun. 32, 240–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Trojanowska, M. Cellular and molecular aspects of vascular dysfunction in systemic sclerosis. Nat. Rev. Rheumatol. 6, 453–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Nacci, F. et al. Intravenous immunoglobulins improve the function and ameliorate joint involvement in systemic sclerosis: a pilot study. Ann. Rheum. Dis. 66, 977–979 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Levy, Y. et al. Intravenous immunoglobulin modulates cutaneous involvement and reduces skin fibrosis in systemic sclerosis: an open-label study. Arthritis Rheum. 50, 1005–1007 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Szekanecz, Z. et al. Combined plasmapheresis and high-dose intravenous immunoglobulin treatment in systemic sclerosis for 12 months: follow-up of immunopathological and clinical effects. Clin. Rheumatol. 28, 347–350 (2009).

    Article  PubMed  Google Scholar 

  81. Amital, H. et al. Fibrosis regression induced by intravenous γ-globulin treatment. Ann. Rheum. Dis. 62, 175–177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dalakas, M. C. et al. High-dose intravenous immune globulin for stiff-person syndrome. N. Engl. J. Med. 345, 1870–1876 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Takahashi, Y., Takata, T., Hoshino, M., Sakurai, M. & Kanazawa, I. Benefit of IVIg for long-standing ataxic sensory neuronopathy with Sjögren's syndrome. IV immunoglobulin. Neurology 60, 503–505 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Kaaja, R. & Julkunen, H. Prevention of recurrence of congenital heart block with intravenous immunoglobulin and corticosteroid therapy: comment on the editorial by Buyon et al. Arthritis Rheum. 48, 280–281 (2003).

    Article  PubMed  Google Scholar 

  85. Kaneko, Y., Nimmerjahn, F. & Ravetch, J. V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Anthony, R. M., Wermeling, F., Karlsson, M. C. & Ravetch, J. V. Identification of a receptor required for the anti-inflammatory activity of IVIg. Proc. Natl Acad. Sci. USA 105, 19571–19578 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kaveri, S. V., Lacroix-Desmazes, S. & Bayry, J. The antiinflammatory IgG. N. Engl. J. Med. 359, 307–309 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Nimmerjahn, F. & Ravetch, J. V. Anti-inflammatory actions of intravenous immunoglobulin. Annu. Rev. Immunol. 26, 513–533 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Ballow, M. The IgG molecule as a biological immune response modifier: mechanisms of action of intravenous immune serum globulin in autoimmune and inflammatory disorders. J. Allergy Clin. Immunol. 127, 315–323 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Radosevich, M. & Burnouf, T. Intravenous immunoglobulin G: trends in production methods, quality control and quality assurance. Vox Sang. 98, 12–28 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Katz, U., Achiron, A., Sherer, Y. & Shoenfeld, Y. Safety of intravenous immunoglobulin (IVIg) therapy. Autoimmun. Rev. 6, 257–259 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Berger, M. in Clinical Focus on Primary Immune Deficiencies (ed. Sullivan, K.) Subcutaneous IgG therapy in immune deficiency diseases. Issue 13, 1–12 (Immune Deficiency Foundation, Townson, 2008).

    Google Scholar 

  93. Gürcan, H. M., Keskin, D. B. & Ahmed, A. R. Information for healthcare providers on general features of IGIV with emphasis on differences between commercially available products. Autoimmun. Rev. 9, 553–559 (2010).

    Article  PubMed  Google Scholar 

  94. Danieli, M. G., Pettinari, L., Moretti, R., Logullo, F. & Gabrielli, A. Subcutaneous immunoglobulin in polymyositis and dermatomyositis: a novel application. Autoimmun. Rev. 10, 144–149 (2011).

    Article  PubMed  Google Scholar 

  95. Lobo, E. D., Hansen, R. J. & Balthasar, J. P. Antibody pharmacokinetics and pharmacodynamics. J. Pharm. Sci. 93, 2645–2668 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Junghans, R. P. & Anderson, C. L. The protection receptor for IgG catabolism is the β2-microglobulin-containing neonatal intestinal transport receptor. Proc. Natl Acad. Sci. USA 93, 5512–5516 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Morell, A. in Intravenous Immunoglobulins in Clinical Practice (eds. Lee, M. E. & Strand, V.) Ch. 1, Pharmacokinetics of intravenous immunoglobulin preparations. 1–18 (Marcel Dekker Inc., New York, 1997).

    Google Scholar 

  98. Bonilla, F. A. Pharmacokinetics of immunoglobulin administered via intravenous or subcutaneous routes. Immunol. Allergy Clin. North Am. 28, 803–819 (2008).

    Article  PubMed  Google Scholar 

  99. Gustafson, R. et al. Rapid subcutaneous immunoglobulin administration every second week results in high and stable serum immunoglobulin G levels in patients with primary antibody deficiencies. Clin. Exp. Immunol. 152, 274–279 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Imbach, P. et al. High-dose intravenous γ-globulin for idiopathic thrombocytopenic purpura in childhood. Lancet 1, 1228–1231 (1981).

    Article  CAS  PubMed  Google Scholar 

  101. Blanchette, V. et al. Randomised trial of intravenous immunoglobulin G, intravenous anti-D, and oral prednisone in childhood acute immune thrombocytopenic purpura. Lancet 344, 703–707 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Hughes, R. A. et al. Intravenous immune globulin (10% caprylate-chromatography purified) for the treatment of chronic inflammatory demyelinating polyradiculoneuropathy (ICE study): a randomised placebo-controlled trial. Lancet Neurol. 7, 136–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Bayry, J., Kazatchkine, M. D. & Kaveri, S. V. Shortage of human intravenous immunoglobulin—reasons and possible solutions. Nat. Clin. Pract. Neurol. 3, 120–121 (2007).

    Article  PubMed  Google Scholar 

  104. Ahmed, A. R., Spigelman, Z., Cavacini, L. A. & Posner, M. R. Treatment of pemphigus vulgaris with rituximab and intravenous immune globulin. N. Engl. J. Med. 355, 1772–1779 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Vo, A. A. et al. Rituximab and intravenous immune globulin for desensitization during renal transplantation. N. Engl. J. Med. 359, 242–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Bayry, J., Lacroix-Desmazes, S., Kazatchkine, M. D. & Kaveri, S. V. Monoclonal antibody and intravenous immunoglobulin therapy for rheumatic diseases: rationale and mechanisms of action. Nat. Clin. Pract. Rheumatol. 3, 262–272 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Micheloud, D. et al. Efficacy and safety of etanercept, high-dose intravenous γ-globulin and plasmapheresis combined therapy for lupus diffuse proliferative nephritis complicating pregnancy. Lupus 15, 881–885 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Chang, D. K. et al. Induction of remission with intravenous immunoglobulin and cyclophosphamide in steroid-resistant Evans' syndrome associated with dermatomyositis. Clin. Rheumatol. 20, 63–66 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Saadeh, C., Bridges, W. & Burwick, F. Dermatomyositis: remission induced with combined oral cyclosporine and high-dose intravenous immune globulin. South. Med. J. 88, 866–870 (1995).

    Article  CAS  PubMed  Google Scholar 

  110. Danieli, M. G. et al. Intravenous immunoglobulin as add on treatment with mycophenolate mofetil in severe myositis. Autoimmun. Rev. 9, 124–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Sharma, K. G. et al. Mycophenolic acid and intravenous immunoglobulin exert an additive effect on cell proliferation and apoptosis in the mixed lymphocyte reaction. Transpl. Immunol. 23, 117–120 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Anthony, R. M. et al. Recapitulation of IVIg anti-inflammatory activity with a recombinant IgG Fc. Science 320, 373–376 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hurez, V. et al. Pooled normal human polyspecific IgM contains neutralizing anti-idiotypes to IgG autoantibodies of autoimmune patients and protects from experimental autoimmune disease. Blood 90, 4004–4013 (1997).

    CAS  PubMed  Google Scholar 

  114. Kanamaru, Y. et al. Inhibitory ITAM signaling by Fc α RI-FcR γ chain controls multiple activating responses and prevents renal inflammation. J. Immunol. 180, 2669–2678 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Brennan, V. M., Salomé-Bentley, N. J. & Chapel, H. M. Prospective audit of adverse reactions occurring in 459 primary antibody-deficient patients receiving intravenous immunoglobulin. Clin. Exp. Immunol. 133, 247–251 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Caress, J. B., Cartwright, M. S., Donofrio, P. D. & Peacock, J. E. Jr. The clinical features of 16 cases of stroke associated with administration of IVIg. Neurology 60, 1822–1824 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Hamrock, D. J. Adverse events associated with intravenous immunoglobulin therapy. Int. Immunopharmacol. 6, 535–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Achermann, F. J., Julmy, F., Gilliver, L. G., Carrel, T. P. & Nydegger, U. E. Soluble type A substance in fresh-frozen plasma as a function of ABO and Secretor genotypes and Lewis phenotype. Transfus. Apher. Sci. 32, 255–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Jarius, S. et al. Intravenous immunoglobulins contain naturally occurring antibodies that mimic antineutrophil cytoplasmic antibodies and activate neutrophils in a TNFα-dependent and Fc-receptor-independent way. Blood 109, 4376–4382 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Desai, S. H., Chouksey, A., Poll, J. & Berger, M. A pilot study of equal doses of 10% IGIV given intravenously or subcutaneously. J. Allergy Clin. Immunol. 124, 854–856 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research activities are supported by grants from the Indian Council of Medical Research (VSN), Institut National de la Santé et de la Recherche Médicale (INSERM), Center National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie and Université Paris Descartes (J. B. and S. V. K.) and the European Community's 7th Framework Program [FP7-2007-2013] under Grant Agreement N° HEALTH-F2-2010-260338-ALLFUN (J. B.). Due to space limitations, we could not cite all relevant published work; we do not mean to undermine the value of uncited studies.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data, discussing content and writing the article, and reviewing/editing of the manuscript before submission.

Corresponding author

Correspondence to Srini V. Kaveri.

Ethics declarations

Competing interests

The research activities of J. Bayry and S. V. Kaveri are supported by grants from Laboratoire Français du Fractionnement et des Biotechnologies, Octapharma, Talecris and CSL Behring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayry, J., Negi, V. & Kaveri, S. Intravenous immunoglobulin therapy in rheumatic diseases. Nat Rev Rheumatol 7, 349–359 (2011). https://doi.org/10.1038/nrrheum.2011.61

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2011.61

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing