Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance

Abstract

Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here we demonstrate that either whole-body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly, inhibition of thyroid hormone receptors in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation, as genetic inhibition of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid hormone–induced modulation of AMPK activity and lipid metabolism in the hypothalamus is a major regulator of whole-body energy homeostasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Energy balance, AMPK pathway and POMC expression.
Figure 2: Effects of chronic central T3 administration.
Figure 3: Effects of central T3 on BAT activation via the SNS.
Figure 4: Effects of genetic ablation of thyroid hormone receptor in the VMH.
Figure 5: Effects of inactivation of hypothalamic de novo lipogenesis.
Figure 6: Effects of selective inactivation of AMPK in the VMH.

Similar content being viewed by others

References

  1. Silva, J.E. Thyroid hormone control of thermogenesis and energy balance. Thyroid 5, 481–492 (1995).

    Article  CAS  Google Scholar 

  2. Coppola, A. et al. A central thermogenic-like mechanism in feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell Metab. 5, 21–33 (2007).

    Article  CAS  Google Scholar 

  3. Herwig, A., Ross, A.W., Nilaweera, K.N., Morgan, P.J. & Barrett, P. Hypothalamic thyroid hormone in energy balance regulation. Obes. Facts 1, 71–79 (2008).

    Article  CAS  Google Scholar 

  4. Pijl, H. et al. Food choice in hyperthyroidism: potential influence of the autonomic nervous system and brain serotonin precursor availability. J. Clin. Endocrinol. Metab. 86, 5848–5853 (2001).

    Article  CAS  Google Scholar 

  5. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  Google Scholar 

  6. Volpe, J.J. & Kishimoto, Y. Fatty acid synthetase of brain: development, influence of nutritional and hormonal factors and comparison with liver enzyme. J. Neurochem. 19, 737–753 (1972).

    Article  CAS  Google Scholar 

  7. Gnoni, G.V., Landriscina, C., Ruggiero, F.M. & Quagliariello, E. Effect of hyperthyroidism on lipogenesis in brown adipose tissue of young rats. Biochim. Biophys. Acta 751, 271–279 (1983).

    Article  CAS  Google Scholar 

  8. Blennemann, B., Leahy, P., Kim, T.S. & Freake, H.C. Tissue-specific regulation of lipogenic mRNAs by thyroid hormone. Mol. Cell. Endocrinol. 110, 1–8 (1995).

    Article  CAS  Google Scholar 

  9. Cachefo, A. et al. Hepatic lipogenesis and cholesterol synthesis in hyperthyroid patients. J. Clin. Endocrinol. Metab. 86, 5353–5357 (2001).

    Article  CAS  Google Scholar 

  10. Park, S.H. et al. Effects of thyroid state on AMP-activated protein kinase and acetyl-CoA carboxylase expression in muscle. J. Appl. Physiol. 93, 2081–2088 (2002).

    Article  CAS  Google Scholar 

  11. Winder, W.W. et al. Long-term regulation of AMP-activated protein kinase and acetyl-CoA carboxylase in skeletal muscle. Biochem. Soc. Trans. 31, 182–185 (2003).

    Article  CAS  Google Scholar 

  12. Branvold, D.J. et al. Thyroid hormone effects on LKB1, MO25, phospho-AMPK, phospho-CREB and PGC-1α in rat muscle. J. Appl. Physiol. 105, 1218–1227 (2008).

    Article  CAS  Google Scholar 

  13. Irrcher, I., Walkinshaw, D.R., Sheehan, T.E. & Hood, D.A. Thyroid hormone (T3) rapidly activates p38 and AMPK in skeletal muscle in vivo. J. Appl. Physiol. 104, 178–185 (2008).

    Article  CAS  Google Scholar 

  14. Morini, P., Conserva, A.R., Lippolis, R., Casalino, E. & Landriscina, C. Differential action of thyroid hormones on the activity of certain enzymes in rat kidney and brain. Biochem. Med. Metab. Biol. 46, 169–176 (1991).

    Article  CAS  Google Scholar 

  15. Blennemann, B., Moon, Y.K. & Freake, H.C. Tissue-specific regulation of fatty acid synthesis by thyroid hormone. Endocrinology 130, 637–643 (1992).

    CAS  PubMed  Google Scholar 

  16. Minokoshi, Y. et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569–574 (2004).

    Article  CAS  Google Scholar 

  17. Gao, S. et al. Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proc. Natl. Acad. Sci. USA 104, 17358–17363 (2007).

    Article  CAS  Google Scholar 

  18. Kola, B. et al. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS One. 3, e1797 (2008).

    Article  Google Scholar 

  19. López, M. et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab. 7, 389–399 (2008).

    Article  Google Scholar 

  20. Andrews, Z.B. et al. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature 454, 846–851 (2008).

    Article  CAS  Google Scholar 

  21. Loftus, T.M. et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288, 2379–2381 (2000).

    Article  CAS  Google Scholar 

  22. Hu, Z., Cha, S.H., Chohnan, S. & Lane, M.D. Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proc. Natl. Acad. Sci. USA 100, 12624–12629 (2003).

    Article  CAS  Google Scholar 

  23. Obici, S., Feng, Z., Arduini, A., Conti, R. & Rossetti, L. Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nat. Med. 9, 756–761 (2003).

    Article  CAS  Google Scholar 

  24. Lam, T.K., Schwartz, G.J. & Rossetti, L. Hypothalamic sensing of fatty acids. Nat. Neurosci. 8, 579–584 (2005).

    Article  CAS  Google Scholar 

  25. Wolfgang, M.J. et al. The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. Proc. Natl. Acad. Sci. USA 103, 7282–7287 (2006).

    Article  CAS  Google Scholar 

  26. López, M. et al. Tamoxifen-induced anorexia is associated with fatty acid synthase inhibition in the ventromedial nucleus of the hypothalamus and accumulation of malonyl-CoA. Diabetes 55, 1327–1336 (2006).

    Article  Google Scholar 

  27. Chakravarthy, M.V. et al. Brain fatty acid synthase activates PPAR-α to maintain energy homeostasis. J. Clin. Invest. 117, 2539–2552 (2007).

    Article  CAS  Google Scholar 

  28. Lam, T.K. Neuronal regulation of homeostasis by nutrient sensing. Nat. Med. 16, 392–395 (2010).

    Article  CAS  Google Scholar 

  29. Dulloo, A.G. Biomedicine. A sympathetic defense against obesity. Science 297, 780–781 (2002).

    Article  Google Scholar 

  30. Commins, S.P., Watson, P.M., Levin, N., Beiler, R.J. & Gettys, T.W. Central leptin regulates the UCP1 and ob genes in brown and white adipose tissue via different β-adrenoceptor subtypes. J. Biol. Chem. 275, 33059–33067 (2000).

    Article  CAS  Google Scholar 

  31. Tong, Q. et al. Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia. Cell Metab. 5, 383–393 (2007).

    Article  CAS  Google Scholar 

  32. Chatterjee, V.K. et al. Thyroid hormone resistance syndrome. Inhibition of normal receptor function by mutant thyroid hormone receptors. J. Clin. Invest. 87, 1977–1984 (1991).

    Article  CAS  Google Scholar 

  33. Lage, R. et al. Ghrelin effects on neuropeptides in the rat hypothalamus depend on fatty acid metabolism actions on BSX but not on gender. FASEB J. 24, 2670–2679 (2010).

    Article  CAS  Google Scholar 

  34. Hagenfeldt, L., Wennlung, A., Felig, P. & Wahren, J. Turnover and splanchnic metabolism of free fatty acids in hyperthyroid patients. J. Clin. Invest. 67, 1672–1677 (1981).

    Article  CAS  Google Scholar 

  35. Beylot, M. et al. Lipolytic and ketogenic fluxes in human hyperthyroidism. J. Clin. Endocrinol. Metab. 73, 42–49 (1991).

    Article  CAS  Google Scholar 

  36. Riis, A.L. et al. Elevated regional lipolysis in hyperthyroidism. J. Clin. Endocrinol. Metab. 87, 4747–4753 (2002).

    Article  CAS  Google Scholar 

  37. Kahn, B.B., Alquier, T., Carling, D. & Hardie, D.G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15–25 (2005).

    Article  CAS  Google Scholar 

  38. Lage, R., Diéguez, C., Vidal-Puig, A. & López, M. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol. Med. 14, 539–549 (2008).

    Article  CAS  Google Scholar 

  39. Plum, L. et al. The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake. Nat. Med. 15, 1195–1201 (2009).

    Article  CAS  Google Scholar 

  40. Belgardt, B.F. et al. PDK1 deficiency in POMC-expressing cells reveals FOXO1-dependent and -independent pathways in control of energy homeostasis and stress response. Cell Metab. 7, 291–301 (2008).

    Article  CAS  Google Scholar 

  41. Pocai, A. et al. Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J. Clin. Invest. 116, 1081–1091 (2006).

    Article  CAS  Google Scholar 

  42. He, W., Lam, T.K., Obici, S. & Rossetti, L. Molecular disruption of hypothalamic nutrient sensing induces obesity. Nat. Neurosci. 9, 227–233 (2006).

    Article  CAS  Google Scholar 

  43. Sangiao-Alvarellos, S. et al. Influence of ghrelin and GH deficiency on AMPK and hypothalamic lipid metabolism. J. Neuroendocrinol. 22, 543–556 (2010).

    Article  CAS  Google Scholar 

  44. Niijima, A., Rohner-Jeanrenaud, F. & Jeanrenaud, B. Role of ventromedial hypothalamus on sympathetic efferents of brown adipose tissue. Am. J. Physiol. 247, R650–R654 (1984).

    CAS  PubMed  Google Scholar 

  45. Holt, S.J., Wheal, H.V. & York, D.A. Hypothalamic control of brown adipose tissue in Zucker lean and obese rats. Effect of electrical stimulation of the ventromedial nucleus and other hypothalamic centres. Brain Res. 405, 227–233 (1987).

    Article  CAS  Google Scholar 

  46. Halvorson, I., Gregor, L. & Thornhill, J.A. Brown adipose tissue thermogenesis is activated by electrical and chemical (L-glutamate) stimulation of the ventromedial hypothalamic nucleus in cold-acclimated rats. Brain Res. 522, 76–82 (1990).

    Article  CAS  Google Scholar 

  47. McCrimmon, R.J. et al. Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes 57, 444–450 (2008).

    Article  CAS  Google Scholar 

  48. Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    Article  CAS  Google Scholar 

  49. van Marken Lichtenbelt, W.D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article  CAS  Google Scholar 

  50. Cypess, A.M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  Google Scholar 

  51. Virtanen, K.A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  Google Scholar 

  52. Skarulis, M.C. et al. Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. J. Clin. Endocrinol. Metab. 95, 256–262 (2010).

    Article  CAS  Google Scholar 

  53. Viollet, B. et al. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. J. Clin. Invest. 111, 91–98 (2003).

    Article  CAS  Google Scholar 

  54. Long, Y.C. & Zierath, J.R. AMP-activated protein kinase signaling in metabolic regulation. J. Clin. Invest. 116, 1776–1783 (2006).

    Article  CAS  Google Scholar 

  55. Costanzo-Garvey, D.L. et al. KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity. Cell Metab. 10, 366–378 (2009).

    Article  CAS  Google Scholar 

  56. Dzamko, N. et al. AMPK beta1 deletion reduces appetite, preventing obesity and hepatic insulin resistance. J. Biol. Chem. 285, 115–122 (2010).

    Article  CAS  Google Scholar 

  57. Rahmouni, K. et al. Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J. Clin. Invest. 114, 652–658 (2004).

    Article  CAS  Google Scholar 

  58. Nogueiras, R. et al. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet induced obesity. J. Neurosci. 29, 5916–5925 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Adams and A. Whittle for discussion and editing and L. Casas, M. Portas and K. Burling for excellent technical assistance. This work has been supported by grants from the UK Medical Research Council (A.V.-P.: G0802051), the Wellcome Trust (K.C.: 080237; A.V.-P.: 065326/Z/01/Z), Xunta de Galicia (R.G.: PGIDITPXIB20811PR), Fondo Investigaciones Sanitarias (M.L.: PS09/01880), Ministerio de Ciencia e Innovación (C.D.: BFU2008; M.L.: RyC-2007-00211; R.N.: RyC-2008-02219 and SAF2009-07049), the EU (A.V.-P. and M.O.: FP7MITIN; A.V.-P. and M.O.: LSHM-CT-2005–018734; C.D., M.L. and R.N.: Health-F2-2008-223713; M.L.: Marie Curie Program QLK6-CT-2002-51671) and the US National Institutes of Health (A.K.S.: DK-19514 and DK-67509; K.R.: HL-084207). CIBER de Fisiopatología de la Obesidad y Nutrición is an initiative of Instituto de Salud Carlos III (ISCIII).

Author information

Authors and Affiliations

Authors

Contributions

M.L., L.V., M.J.V., S.R.-C., C.R.G., R.L., P.B.M.d.M., S.T. and R.N. performed the in vivo experiments, analytical methods (real-time RT-PCR, in situ hybridization, western blotting and enzymatic assays) and collected and analyzed the data. V.R.V. and M.O. developed analytical platforms and performed and analyzed lipidomic experiments. D.A.M., K.A. and K.R. performed and analyzed the sympathetic nerve activity recording studies. D.C. developed AMPK-DN– and AMPK-CA–encoding adenoviruses. E.S. and K.C. generated TR-DN constructs and validated the TR-DN–encoding adenoviruses. R.G. developed and performed immunohistochemistry and immunofluorescence experiments. A.K.S. developed and performed metabolic analyses. M.L., L.V., S.R.-C., C.L., K.C., K.R., C.D. and A.V.-P. designed the experiments. M.L., S.R.-C., R.N., C.L., K.C., K.R., C.D. and A.V.-P. discussed the manuscript. M.L., C.D. and A.V.-P. coordinated and directed the project. M.L. and A.V.-P. developed the hypothesis and wrote the manuscript.

Corresponding authors

Correspondence to Miguel López or Antonio Vidal-Puig.

Ethics declarations

Competing interests

C.L. is an employee of AstraZeneca Research and Development and holds stock in AstraZeneca Research and Development.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1, Supplementary Figures 1–7 and Supplementary Methods (PDF 2357 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, M., Varela, L., Vázquez, M. et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med 16, 1001–1008 (2010). https://doi.org/10.1038/nm.2207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing