Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inferences, questions and possibilities in Toll-like receptor signalling

Abstract

The Toll-like receptors (TLRs) are the key proteins that allow mammals — whether immunologically naive or experienced — to detect microbes. They lie at the core of our inherited resistance to disease, initiating most of the phenomena that occur in the course of infection. Quasi-infectious stimuli that have been used for decades to study inflammatory mechanisms can activate the TLR family of proteins. And it now seems that many inflammatory processes, both sterile and infectious, may depend on TLR signalling. We are in a good position to apply our understanding of TLR signalling to a range of challenges in immunology and medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The principal relationships between the Toll-like receptors (TLRs), their adaptors, protein kinases that are linked to them, and downstream signalling effects.
Figure 2: A global view of the signalling pathways activated by mammalian Toll-like receptors (TLRs) (grey shaded area), with reference to homologous pathways in Drosophila (blue lettering), reveals strategic targets for interventional blockade (red stars).
Figure 3: The ‘hourglass’ shape of the innate immune response.

Similar content being viewed by others

References

  1. Anderson, K. V., Bokla, L. & Nusslein-Volhard, C. Establishment of dorsal–ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 42, 791–798 (1985).

    CAS  PubMed  Google Scholar 

  2. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    CAS  PubMed  Google Scholar 

  3. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Tabeta, K. et al. TLR9 and TLR3 as essential components of innate immune defense against mouse cytomegalovirus. Proc. Natl Acad. Sci. USA 101, 3516–3521 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beutler, B., Hoebe, K., Georgel, P., Tabeta, K. & Du, X. Forward genetic dissection of afferent immunity: the role of TIR adapter proteins in innate and adaptive immune responses. Adv. Exp. Med. Biol. (in the press).

  6. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol. 2, 675–680 (2001).

    CAS  Google Scholar 

  7. Campos, M. A. et al. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. J. Immunol. 167, 416–423 (2001).

    CAS  PubMed  Google Scholar 

  8. Campos, M. A. et al. Impaired production of proinflammatory cytokines and host resistance to acute infection with Trypanosoma cruzi in mice lacking functional myeloid differentiation factor 88. J. Immunol. 172, 1711–1718 (2004).

    CAS  PubMed  Google Scholar 

  9. Underhill, D. M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999).

    ADS  CAS  PubMed  Google Scholar 

  10. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    CAS  PubMed  Google Scholar 

  11. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    ADS  CAS  PubMed  Google Scholar 

  12. Zhang, D. et al. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303, 1522–1526 (2004).

    ADS  CAS  PubMed  Google Scholar 

  13. Meier, A. et al. Toll-like receptor (TLR) 2 and TLR4 are essential for Aspergillus-induced activation of murine macrophages. Cell Microbiol. 5, 561–570 (2003).

    CAS  PubMed  Google Scholar 

  14. Hoebe, K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743–748 (2003).

    ADS  CAS  PubMed  Google Scholar 

  15. Lund, J., Sato, A., Akira, S., Medzhitov, R. & Iwasaki, A. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198, 513–520 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Heil, F. et al. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    ADS  CAS  PubMed  Google Scholar 

  17. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    ADS  CAS  PubMed  Google Scholar 

  18. Lund, J. M. et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl Acad. Sci. USA 101, 5598–5603 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chamaillard, M., Girardin, S. E., Viala, J. & Philpott, D. J. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell Microbiol. 5, 581–592 (2003).

    CAS  PubMed  Google Scholar 

  20. Brown, M. G. et al. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292, 934–937 (2001).

    ADS  CAS  PubMed  Google Scholar 

  21. Hoebe, K. et al. Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nature Immunol. 4, 1223–1229 (2003).

    CAS  Google Scholar 

  22. Schnare, M. et al. Toll-like receptors control activation of adaptive immune responses. Nature Immunol. 2, 947–950 (2001).

    CAS  Google Scholar 

  23. Beutler, B. et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316, 552–554 (1985).

    ADS  CAS  PubMed  Google Scholar 

  24. Beutler, B., Milsark, I. W. & Cerami, A. Passive immunization against cachectin/tumor necrosis factor (TNF) protects mice from the lethal effect of endotoxin. Science 229, 869–871 (1985).

    ADS  CAS  PubMed  Google Scholar 

  25. Car, B. D. et al. Interferon γ receptor deficient mice are resistant to endotoxic shock. J. Exp. Med. 179, 1437–1444 (1994).

    CAS  PubMed  Google Scholar 

  26. Karaghiosoff, M. et al. Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nature Immunol. 4, 471–477 (2003).

    CAS  Google Scholar 

  27. Wysocka, M. et al. Interleukin-12 is required for interferon-γ production and lethality in lipopolysaccharide-induced shock in mice. Eur. J. Immunol. 25, 672–676 (1995).

    CAS  PubMed  Google Scholar 

  28. Elliott, M. J. et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis. Lancet 344, 1105–1110 (1994).

    CAS  PubMed  Google Scholar 

  29. Brandt, J. et al. Successful treatment of active ankylosing spondylitis with the anti-tumor necrosis factor α monoclonal antibody infliximab. Arthritis Rheum. 43, 1346–1352 (2000).

    CAS  PubMed  Google Scholar 

  30. Van Dullemen, H. M. et al. Treatment of Crohn's disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology 109, 129–135 (1995).

    CAS  PubMed  Google Scholar 

  31. Iyer, S., Yamauchi, P. & Lowe, N. J. Etanercept for severe psoriasis and psoriatic arthritis: observations on combination therapy. Br. J. Dermatol. 146, 118–121 (2002).

    CAS  PubMed  Google Scholar 

  32. Georgel, P. et al. Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell 1, 503–514 (2001).

    CAS  PubMed  Google Scholar 

  33. Sun, S. C., Lindstrom, I., Lee, J. Y. & Faye, I. Structure and expression of the attacin genes in Hyalophora cecropia. Eur. J. Biochem. 196, 247–254 (1991).

    CAS  PubMed  Google Scholar 

  34. Reichhart, J. M. et al. Insect immunity: developmental and inducible activity of the Drosophila diptericin promoter. EMBO J. 11, 1469–1477 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Georgel, P. et al. Insect immunity: the diptericin promoter contains multiple functional regulatory sequences homologous to mammalian acute-phase response elements. Biochem. Biophys. Res. Commun. 197, 508–517 (1993).

    CAS  PubMed  Google Scholar 

  36. Rutschmann, S. et al. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12, 569–580 (2000).

    CAS  PubMed  Google Scholar 

  37. Shakhov, A. N., Collart, M. A., Vassalli, P., Nedospasov, S. A. & Jongeneel, C. V. κB-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor α gene in primary macrophages. J. Exp. Med. 171, 35–47 (1990).

    CAS  PubMed  Google Scholar 

  38. Han, J., Brown, T. & Beutler, B. Endotoxin-responsive sequences control cachectin/TNF biosynthesis at the translational level. J. Exp. Med. 171, 465–475 (1990).

    CAS  PubMed  Google Scholar 

  39. Hsu, H. L., Shu, H. B., Pan, M. G. & Goeddel, D. V. TRADD–TRAF2 and TRADD–FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84, 299–308 (1996).

    CAS  PubMed  Google Scholar 

  40. Rothe, M., Sarma, V., Dixit, V. W. & Goeddel, D. V. TRAF2-mediated activation of NF-κB by TNF receptor 2 and CD40. Science 269, 1424–1427 (1995).

    ADS  CAS  PubMed  Google Scholar 

  41. Han, S. H., Yea, S. S., Jeon, Y. J., Yang, K. H. & Kaminski, N. E. Transforming growth factor-β1 (TGF-β1) promotes IL-2 mRNA expression through the up-regulation of NF-κB, AP-1 and NF-AT in EL4 cells. J. Pharmacol. Exp. Ther. 287, 1105–1112 (1998).

    CAS  PubMed  Google Scholar 

  42. Arsura, M. et al. Transient activation of NF-κB through a TAK1/IKK kinase pathway by TGF-β1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation. Oncogene 22, 412–425 (2003).

    CAS  PubMed  Google Scholar 

  43. Sakurai, H., Chiba, H., Miyoshi, H., Sugita, T. & Toriumi, W. IκB kinases phosphorylate NF-κB p65 subunit on serine 536 in the transactivation domain. J. Biol. Chem. 274, 30353–30356 (1999).

    CAS  PubMed  Google Scholar 

  44. Sakurai, H., Miyoshi, H., Toriumi, W. & Sugita, T. Functional interactions of transforming growth factor β-activated kinase 1 with IκB kinases to stimulate NF-κB activation. J. Biol. Chem. 274, 10641–10648 (1999).

    CAS  PubMed  Google Scholar 

  45. Goldfeld, A. E. et al. Calcineurin mediates human tumor necrosis factor α gene induction in stimulated T and B cells. J. Exp. Med. 180, 763–768 (1994).

    CAS  PubMed  Google Scholar 

  46. Verweij, C. L., Geerts, M. & Aarden, L. A. Activation of interleukin-2 gene transcription via the T-cell surface molecule CD28 is mediated through an NF-κB-like response element. J. Biol. Chem. 266, 14179–14182 (1991).

    CAS  PubMed  Google Scholar 

  47. Harhaj, E. W., Maggirwar, S. B., Good, L. & Sun, S. C. CD28 mediates a potent costimulatory signal for rapid degradation of IκBβ which is associated with accelerated activation of various NF-κB/Rel heterodimers. Mol. Cell. Biol. 16, 6736–6743 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hehner, S. P. et al. Mixed-lineage kinase 3 delivers CD3/CD28-derived signals into the IκB kinase complex. Mol. Cell. Biol. 20, 2556–2568 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin, X., O'Mahony, A., Mu, Y., Geleziunas, R. & Greene, W. C. Protein kinase C-Θ participates in NF-κB activation induced by CD3–CD28 costimulation through selective activation of IκB kinase β. Mol. Cell. Biol. 20, 2933–2940 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jun, J. E. et al. Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity 18, 751–762 (2003).

    CAS  PubMed  Google Scholar 

  51. Marinari, B., Costanzo, A., Marzano, V., Piccolella, E. & Tuosto, L. CD28 delivers a unique signal leading to the selective recruitment of RelA and p52 NF-κB subunits on IL-8 and Bcl-xL gene promoters. Proc. Natl Acad. Sci. USA 101, 6098–6103 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, D. et al. CD3/CD28 costimulation-induced NF-κB activation is mediated by recruitment of protein kinase C-Θ, Bcl10, and IκB kinase β to the immunological synapse through CARMA1. Mol. Cell. Biol. 24, 164–171 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Leadbetter, E. A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    ADS  CAS  PubMed  Google Scholar 

  54. Viglianti, G. A. et al. Activation of autoreactive B cells by CpG dsDNA. Immunity 19, 837–847 (2003).

    CAS  PubMed  Google Scholar 

  55. Leadbetter, E. A., Rifkin, I. R. & Marshak-Rothstein, A. Toll-like receptors and activation of autoreactive B cells. Curr. Dir. Autoimmun. 6, 105–122 (2003).

    PubMed  Google Scholar 

  56. Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J. & Mathison, J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431–1433 (1990).

    ADS  CAS  PubMed  Google Scholar 

  57. Poltorak, A., Ricciardi-Castagnoli, P., Citterio, A. & Beutler, B. Physical contact between LPS and Tlr4 revealed by genetic complementation. Proc. Natl Acad. Sci. USA 97, 2163–2167 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, P. Y. & Munford, R. S. CD14-dependent internalization and metabolism of extracellular phosphatidylinositol by monocytes. J. Biol. Chem. 274, 23235–23241 (1999).

    CAS  PubMed  Google Scholar 

  59. Asch, A. S., Barnwell, J., Silverstein, R. L. & Nachman, R. L. Isolation of the thrombospondin membrane receptor 3. J. Clin. Invest. 79, 1054–1061 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Dawson, D. W. et al. CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J. Cell Biol. 138, 707–717 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Endemann, G. et al. CD36 is a receptor for oxidized low density lipoprotein 2. J. Biol. Chem. 268, 11811–11816 (1993).

    CAS  PubMed  Google Scholar 

  62. El Khoury, J. B. et al. CD36 mediates the innate host response to β-amyloid 1. J. Exp. Med. 197, 1657–1666 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Crawford, S. E. et al. Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 93, 1159–1170 (1998).

    CAS  PubMed  Google Scholar 

  64. Lewis, P. A. & Loomis, D. The formation of anti-sheep hemolytic amboceptor in the normal and tuberculous guinea pig. J. Exp. Med. 40, 503 (1924).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Freund, J. & McDermott, K. Sensitization to horse serum by means of adjuvants. Proc. Soc. Exp. Biol. Med. 49, 548–553 (1942).

    CAS  Google Scholar 

  66. Condie, R. M., Zak, S. J. & Good, R. A. Effect of meningococcal endotoxin on the immune response. Proc. Soc. Exp. Biol. Med. 90, 355–360 (1955).

    CAS  PubMed  Google Scholar 

  67. Le Bon, A. et al. Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14, 461–470 (2001).

    CAS  PubMed  Google Scholar 

  68. Le Bon, A. & Tough, D. F. Links between innate and adaptive immunity via type I interferon. Curr. Opin. Immunol. 14, 432–436 (2002).

    CAS  PubMed  Google Scholar 

  69. Honda, K. et al. Selective contribution of IFN-α/β signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection Proc. Natl Acad. Sci. USA 100, 10872–10877 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Krieg, A. M. Antitumor applications of stimulating toll-like receptor 9 with CpG oligodeoxynucleotides. Curr. Oncol. Rep. 6, 88–95 (2004).

    PubMed  Google Scholar 

  71. Maurer, T. et al. CpG-DNA aided cross-presentation of soluble antigens by dendritic cells. Eur. J. Immunol. 32, 2356–2364 (2002).

    CAS  PubMed  Google Scholar 

  72. Heikenwalder, M. et al. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nature Med. 10, 187–192 (2004).

    CAS  PubMed  Google Scholar 

  73. O'Neill, L. A. Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases. Curr. Opin. Pharmacol. 3, 396–403 (2003).

    CAS  PubMed  Google Scholar 

  74. Broide, D. & Raz, E. DNA-Based immunization for asthma. Int. Arch. Allergy Immunol. 118, 453–456 (1999).

    CAS  PubMed  Google Scholar 

  75. Goldstein, D. R., Tesar, B. M., Akira, S. & Lakkis, F. G. Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. J. Clin. Invest. 111, 1571–1578 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bernard, G. R. et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 344, 699–709 (2001).

    CAS  PubMed  Google Scholar 

  77. Annane, D. et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. J. Am. Med. Assoc. 288, 862–871 (2002).

    CAS  Google Scholar 

  78. Smirnova, I. et al. Assay of locus-specific genetic load implicates rare Toll-like receptor 4 mutations in meningococcal susceptibility Proc. Natl Acad. Sci. USA 100, 6075–6080 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hawn, T. R. et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires' disease. J. Exp. Med. 198, 1563–1572 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kawata, T. et al. E5531, a synthetic non-toxic lipid A derivative blocks the immunobiological activities of lipopolysaccharide. Br. J. Pharmacol. 127, 853–862 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bartfai, T. et al. A low molecular weight mimic of the Toll/IL-1 receptor/resistance domain inhibits IL-1 receptor-mediated responses. Proc. Natl Acad. Sci. USA 100, 7971–7976 (2003).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Suzuki, N. et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416, 750–756 (2002).

    ADS  CAS  PubMed  Google Scholar 

  83. Yamamoto, M. et al. Role of adapter TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    ADS  CAS  PubMed  Google Scholar 

  84. Yamamoto, M. et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nature Immunol. 4, 1144–1150 (2003).

    CAS  Google Scholar 

  85. Jiang, Z. et al. Poly(I-C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFκB and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3–TRAF6–TAK1–TAB2–PKR. J. Biol. Chem. 278, 16713–16719 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares that he has no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beutler, B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430, 257–263 (2004). https://doi.org/10.1038/nature02761

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02761

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing