Elsevier

Diabetes & Metabolism

Volume 30, Issue 2, April 2004, Pages 121-138
Diabetes & Metabolism

Review
The ins and outs of mitochondrial dysfunction in NASH

https://doi.org/10.1016/S1262-3636(07)70098-8Get rights and content

Summary

Rich diet and lack of exercise are causing a surge in obesity, insulin resistance and steatosis, which can evolve into steatohepatitis. Steatosis and nonalcoholic steatohepatitis (NASH) can also be induced by drugs such as amiodarone, tamoxifen and some antiretroviral drugs. There is growing evidence that mitochondrial dysfunction, and more specifically respiratory chain deficiency, plays a role in the pathophysiology of NASH whatever its initial cause. In contrast, the β-oxidation of fatty acids can be either increased (as in insulin resistance-associated NASH) or decreased (as in drug-induced NASH). However, in both circumstances, the generation of reactive oxygen species (ROS) by the damaged respiratory chain is augmented, as components of this chain are over-reduced by electrons, which then abnormally react with oxygen to form increased amounts of ROS. Concomitantly, ROS oxidize fat deposits to release lipid peroxidation products that have detrimental effects on hepatocytes and other hepatic cells. In hepatocytes, ROS and lipid peroxidation products further impair the respiratory chain, either directly or indirectly through oxidative damage to the mitochondrial genome. This, in turn, leads to the generation of more ROS and a vicious cycle ensues. Mitochondrial dysfunction can also lead to apoptosis or necrosis depending on the energy status of the cell. ROS and lipid peroxidation products also activate stellate cells, thus resulting in fibrosis. Finally, ROS and lipid peroxidation increase the generation of several cytokines (TNF-α, TGF-β, Fas ligand) that play sundry roles in the pathogenesis of NASH. Recent investigations have shown that some genetic polymorphisms can significantly increase the risk of steatohepatitis and that several drugs can prevent or even reverse NASH. For the next decade, reducing the incidence of NASH will be a major challenge for hepatologists.

Résumé

Les tenants et les aboutissants de la dysfonction mitochondriale au cours de la stéatohépatite non-alcoolique

Une alimentation trop riche et le manque d'exercice sont responsables d'une épidémie d'obésité, d'insulinorésistance et de stéatose, une lésion du foie pouvant évoluer en stéatohépatite. La stéatose et la stéatohépatite non-alcoolique (SHNA) peuvent être également induites par divers médicaments, tels que l'amiodarone, le tamoxifène et certains dérivés antirétroviraux. Il existe de plus en plus d'arguments expérimentaux et cliniques suggérant qu'un dysfonctionnement mitochondrial, et plus précisément un déficit de la chaîne respiratoire mitochondriale, joue un rôle physiopathologique important dans la SHNA, quelle qu'en soit sa cause. En revanche, l'oxydation mitochondriale des acides gras peut être soit augmentée (en cas de SHNA liées à une insulinorésistance), soit diminuée (dans le cas des SHNA induites par les médicaments). Cependant, dans les deux situations, il existe une augmentation de la production d'espèces réactives de l'oxygène (ERO) par la chaîne respiratoire endommagée. En effet, certains constituants de cette chaîne sont réduits en excès par les électrons qui réagissent alors anormalement avec l'oxygène pour former des ERO. Ces ERO peuvent alors oxyder les graisses accumulées dans l'hépatocyte, entraînant la génération de produits de la peroxydation lipidique qui ont des effets délétères sur les hépatocytes et les autres cellules du foie. Dans les hépatocytes, les ERO et les produits de la peroxydation lipidique endommagent de façon supplémentaire la chaîne respiratoire mitochondriale, soit directement, soit indirectement par l'intermédiaire de diverses altérations oxydatives du génome mitochondrial. Ceci a pour conséquence une production encore plus élevée d'ERO, ce qui enclenche un cercle vicieux. Le dysfonctionnement mitochondrial peut aussi entraîner une apoptose ou une nécrose, en fonction de l'état énergétique de la cellule. Les ERO et les produits de la peroxydation lipidique peuvent également activer les cellulaires étoilées du foie, favorisant la fibrose. Enfin, ces dérivés peuvent augmenter la production de plusieurs cytokines (TNF-α, TGF-β, ligand de Fas) qui jouent des rôles divers dans la pathogenèse de la SHNA. Des études récentes ont montré que plusieurs polymorphismes génétiques peuvent augmenter de façon significative le risque d'apparition de la SHNA, et que certains médicaments sont susceptibles d'en limiter son évolution. Durant la prochaine décennie, la réduction de l'incidence de la SHNA sera un défi majeur pour les hépatologues.

References (180)

  • M Hayakawa et al.

    Massive conversion of guanosine to 8-hydroxy-guanosine in mouse liver mitochondrial DNA by administration of azidothymidine

    Biochem Biophys Res Commun

    (1991)
  • KG Pinz et al.

    Action of mitochondrial DNA polymerase γ at sites of base loss or oxidative damage

    J Biol Chem

    (1995)
  • AM Martin et al.

    Accumulation of mitochondrial DNA mutations in human immunodeficiency virus-infected patients treated with nucleoside-analogue reverse-transcriptase inhibitors

    Am J Hum Genet

    (2003)
  • M Berneburg et al.

    Singlet oxygen mediates the UVA-induced generation of photoaging-associated mitochondrial common deletion

    J Biol Chem

    (1999)
  • M Barile et al.

    3′-Azido-3′deoxythymidine uptake into isolated rat liver mitochondria and impairment of ADP/ATP translocator

    Biochemical Pharmacol

    (1997)
  • A Berson et al.

    Steatohepatitis-inducing drugs cause mitochondrial dysfunction and lipid peroxidation in rat hepatocytes

    Gastroenterology

    (1998)
  • B Fromenty et al.

    Evaluation of human blood lymphocytes as a model to study the effects of drugs on human mitochondria. Effects of low concentrations of amiodarone on fatty acid oxidation, ATP levels and cell survival

    Biochem Pharmacol

    (1993)
  • CMP Cardoso et al.

    Mechanisms of the deleterious effects of tamoxifen on mitochondrial respiration rate and phosphorylation efficiency

    Toxicol Appl Pharmacol

    (2001)
  • B Georges et al.

    Beneficial effects of L-carnitine in myoblastic C2C12 cells. Interaction with zidovudine

    Biochem Pharmacol

    (2003)
  • S Chitturi et al.

    NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance

    Hepatology

    (2002)
  • AD Attie et al.

    Relationship between stearoyl-CoA desaturase activity and plasma triglycerides in human and mouse hypertriglyceridemia

    J Lipid Res

    (2002)
  • I Shimomura et al.

    Increased levels of nuclear SREBP-1c associated with fatty livers of two mouse models of diabetes mellitus

    J Biol Chem

    (1999)
  • M Charlton et al.

    Apolipoprotein synthesis in nonalcoholic steatohepatitis

    Hepatology

    (2002)
  • G Musso et al.

    Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis

    Hepatology

    (2003)
  • R Sreekumar et al.

    Hepatic gene expression in histologically progressive nonalcoholic steatohepatitis

    Hepatology

    (2003)
  • C Taghibiglou et al.

    Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. Evidence for enhanced lipoprotein assembly, reduced intracellular apoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamster model

    J Biol Chem

    (2000)
  • AJ Sanyal et al.

    Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities

    Gastroenterology

    (2001)
  • N Chalasani et al.

    Hepatic cytochrome P450 2E1 activity in nondiabetic patients with nonalcoholic steatohepatitis

    Hepatology

    (2003)
  • Z Li et al.

    Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease

    Hepatology

    (2003)
  • GA Cook et al.

    Regulation of carnitine palmitoyltransferase by insulin results in decreased activity and decreased apparent Ki values for malonyl-CoA

    J Biol Chem

    (1987)
  • T Nakatani et al.

    Mechanism for peroxisome proliferator-activated receptor-α activator-induced up-regulation of UCP-2 mRNA in rodent hepatocytes

    J Biol Chem

    (2002)
  • D Serra et al.

    Regulation of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase protein by starvation, fat feeding, and diabetes

    Arch Biochem Biophys

    (1993)
  • JC Collins et al.

    Hepatic peroxisomal abnormalities in abetalipoproteinemia

    Gastroenterology

    (1989)
  • D De Craemer et al.

    Alterations of peroxisomes in steatosis of the human liver: a quantitative study

    Hepatology

    (1995)
  • A Kante et al.

    Metabolic control of the expression of mitochondrial hydroxybutyrate dehydrogenase, a ketone body converting enzyme

    Biochim Biophys Acta

    (1990)
  • KD Chavin et al.

    Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion

    J Biol Chem

    (1999)
  • C Fleury et al.

    The mitochondrial uncoupling protein-2: current status

    Int J Biochem Cell Biol

    (1999)
  • P Ježek

    Possible physiological roles of mitochondrial uncoupling proteins-UCPn

    Int J Biochem Cell Biol

    (2002)
  • G Baffy et al.

    Obesity-related fatty liver is unchanged in mice deficient for mitochondrial uncoupling protein 2

    Hepatology

    (2002)
  • G Quash et al.

    Anaplerotic reactions in tumor proliferation and apoptosis

    Biochem Pharmacol

    (2003)
  • SH Caldwell et al.

    Mitochondrial abnormalities in nonalcoholic steatohepatitis

    J Hepatol

    (1999)
  • PH Ducluzeau et al.

    Depletion of mitochondrial DNA associated with infantile cholestasis and progressive liver fibrosis

    J Hepatol

    (1999)
  • PH Ducluzeau et al.

    Progressive reversion of clinical and molecular phenotype in a child with liver mitochondrial DNA depletion

    J Hepatol

    (2002)
  • M Pérez-Carreras et al.

    Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis

    Hepatology

    (2003)
  • K Schulze-Osthoff et al.

    Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation

    J Biol Chem

    (1992)
  • IV Turko et al.

    Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes

    J Biol Chem

    (2003)
  • T Young et al.

    Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria: studies using myxothiazol

    Arch Biochem Biophys

    (2002)
  • S Yamagishi et al.

    Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A

    J Biol Chem

    (2001)
  • J St-Pierre et al.

    Topology of superoxide production from different sites in the mitochondrial electron transport chain

    J Biol Chem

    (2002)
  • SQ Yang et al.

    Mitochondrial adaptations to obesity-related oxidant stress

    Arch Biochem Biophys

    (2000)
  • Cited by (241)

    • Nitro-fatty acids as novel Virgin olive oil quality markers

      2023, Journal of Food Composition and Analysis
    • Aggravation of hepatic lipidosis in red-footed tortoise Chelonoidis carbonaria with age is associated with alterations in liver mitochondria

      2022, Comparative Biochemistry and Physiology Part - B: Biochemistry and Molecular Biology
      Citation Excerpt :

      Possible mechanisms leading to reduced mitochondrial activity in NASH are associated with damage promoted by high levels of reactive oxygen and nitrogen species. Other factors that influence mitochondrial activity in NAFLD are impaired mitochondrial dynamics and mitophagy, overproduction of TNF-α and interferons, Ca2+ overload, disruption of insulin signal and lipotoxicity (Fromenty et al., 2004; Shum et al., 2020). MPT is the phenomenon of a non-selective channel opening in the inner mitochondrial membrane, that allows the passage of matrix components below 1.5 kDa, and the colloidosmotic effect of water influx, leading to mitochondrial swelling and loss of membrane potential resulting in bioenergetics dysfunction, cellular injury and apoptosis or necrosis (Crompton, 1999; Gunter and Pfeiffer, 1990; Haworth and Hunter, 2000; Vercesi et al., 2018; Zoratti and Szabò, 1995).

    • Pancreastatin induces hepatic steatosis in type 2 diabetes by impeding mitochondrial functioning

      2021, Life Sciences
      Citation Excerpt :

      On top of that, oxidative stress or reactive oxygen species (ROS) in cells or tissues deregulate mitochondrial biogenesis and membrane potential, which culminates in altered mitochondrial functioning and cellular apoptosis [12]. To support this, Fromenty et al. unveiled that, regardless of the initial cause of NASH, abnormal mitochondrial functioning, especially altered respiratory complex activity, plays a paramount important role in the pathophysiology of NASH [13]. Subsequently, dysregulated respiratory complex activity enhances mitochondrial ROS (mtROS); thereby, mitochondrial DNA (mtDNA) damage and structural abnormalities [14].

    View all citing articles on Scopus
    View full text