Skip to main content
Log in

Pathophysiology of shunt dysfunction in shunt treated hydrocephalus

  • Clinical Article - Neurosurgical Anatomy
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

We hypothesized that shunt dysfunction in the ventricular catheter and the shunt valve is caused by different cellular responses. We also hypothesized that the cellular responses depend on different pathophysiological mechanisms.

Methods

Removed shunt material was collected. Macroscopic tissue in the catheters was paraffin-embedded and HE-stained. Valves were incubated with trypsin-EDTA in order to detach macroscopically invisible biomaterial, which was then cytospinned and HE-stained. Associated aetiological and surgical data were collected by reviewing patient files, and ventricular catheter position was examined using preoperative radiology (CT scans).

Results

We examined eleven ventricular catheters and ten shunt valves. Catheters: 6/11 catheters contained intraluminal tissue consisting of vascularised glial tissue and inflammatory cells (macrophages/giant cells and a few eosinophils). Catheter adherence correlated with the presence of intraluminal tissue, and all tissue containing catheters had some degree of ventricle wall contact. All obstructed catheters contained intraluminal tissue, except one catheter that was dysfunctional because of lost ventricular contact. Valves: Regardless of intraoperative confirmation of valve obstruction, all ten valves contained an almost uniform cellular response of glial cells (most likely ependymal cells), macrophages/giant cells, and lymphomonocytic cells. Some degree of ventricle wall catheter contact was present in all examined valves with available radiology (9/10).

Conclusions

The same cellular responses (i.e., glial cells and inflammatory cells) cause both catheter obstruction and valve obstruction. We propose two synergistic pathophysiological mechanisms. (1) Ventricle wall/parenchymal contact by the catheter causes mechanical irritation of the parenchyma including ependymal exfoliation. (2) The shunt material provokes an inflammatory reaction, either nonspecific or specific. In combination, these mechanisms cause obstructive tissue ingrowth (glial and inflammatory) in the catheter and clogging of the valve by exfoliated glial cells and reactive inflammatory cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aoki N, Sakai T (1990) Avulsion of choroid plexus during revision of ventricular shunting: Its high incidence and predictive value on computed tomography scan. Surg Neurol 33:256–260

    Article  PubMed  CAS  Google Scholar 

  2. Bache S, Petersen JT, Garvey LH (2011) Anaphylaxis to ethylene oxide—a rare and overlooked phenomenon? Acta Anaesthesiol Scand 55:1279–1282

    Article  PubMed  CAS  Google Scholar 

  3. Bierbrauer KS, Storrs BB, McLone DG, Tomita T, Dauser R (1990) A prospective, randomized study of shunt function and infections as a function of shunt placement. Pediatr Neurosurg 16:287–291

    Article  PubMed  Google Scholar 

  4. Bigner SH, Elmore PD, Dee AL, Johnston WW (1985) The cytopathology of reactions to ventricular shunts. Acta Cytol 29:391–396

    PubMed  CAS  Google Scholar 

  5. Borgbjerg BM, Gjerris F, Albeck MJ, Hauerberg J, Borgesen SE (1995) Frequency and causes of shunt revisions in different cerebrospinal fluid shunt types. Acta Neurochir (Wien) 136:189–194

    Article  CAS  Google Scholar 

  6. Browd SR, Gottfried ON, Ragel BT, Kestle JRW (2006) Failure of cerebrospinal fluid shunts. Part II: Overdrainage, loculation, and abdominal complications. Pediatr Neurol 34:171–176

    Article  PubMed  Google Scholar 

  7. Bruni JE, Del Bigio MR (1986) Reaction of periventricular tissue in the rat fourth ventricle to chronically placed shunt tubing implants. Neurosurgery 19:337–345

    Article  PubMed  CAS  Google Scholar 

  8. Brydon HL, Bayston R, Hayward R, Harkness W (1996) Removed shunt valves: Reasons for failure and implications for valve design. Br J Neurosurg 10:245–251

    Article  PubMed  CAS  Google Scholar 

  9. Brydon HL, Keir G, Thompson EJ, Bayston R, Hayward R, Harkness W (1998) Protein adsorption to hydrocephalus shunt catheters: CSF protein adsorption. J Neurol Neurosurg Psychiatry 64:643–647

    Article  PubMed  CAS  Google Scholar 

  10. Collins P, Hockley AD, Woollam DH (1978) Surface ultrastructure of tissues occluding ventricular catheters. J Neurosurg 48:609–613

    Article  PubMed  CAS  Google Scholar 

  11. Czernicki Z, Strzałkowski R, Walasek N, Gajkowska B (2010) What can be found inside shunt catheters. Acta Neurochir Suppl 106:81–85

    Article  PubMed  CAS  Google Scholar 

  12. Del Bigio MR (1998) Biological reactions to cerebrospinal fluid shunt devices: a review of the cellular pathology. Neurosurgery 42:319–325, discussion 325–316

    Article  PubMed  Google Scholar 

  13. Del Bigio MR, Bruni JE (1986) Reaction of rabbit lateral periventricular tissue to shunt tubing implants. J Neurosurg 64:932–940

    Article  PubMed  Google Scholar 

  14. Drake JM, Kestle JR, Milner R, Cinalli G, Boop F, Piatt J, Haines S, Schiff SJ, Cochrane DD, Steinbok P, MacNeil N (1998) Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery 43:294–303, discussion 303–295

    Article  PubMed  CAS  Google Scholar 

  15. Ellis MJ, Kazina CJ, Del Bigio MR, McDonald PJ (2008) Treatment of recurrent ventriculoperitoneal shunt failure associated with persistent cerebrospinal fluid eosinophilia and latex allergy by use of an “extracted” shunt. J Neurosurg Pediatr 1:237–239

    Article  PubMed  Google Scholar 

  16. Franz S, Rammelt S, Scharnweber D, Simon JC (2011) Immune responses to implants—a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32:6692–6709

    Article  PubMed  CAS  Google Scholar 

  17. Gedikoglu Y, Colak A, Benli K, Erbengi T (1993) Reaction of rabbit lateral periventricular tissue to non-infected and infected (Staphylococcus epidermidis) shunt tubing implants. A light and transmission electron microscope study. Acta Neurochir (Wien) 122:266–270

    Article  CAS  Google Scholar 

  18. Go KG, Ebels EJ, van Woerden H (1981) Experiences with recurring ventricular catheter obstructions. Clin Neurol Neurosurg 83:47–56

    Article  PubMed  CAS  Google Scholar 

  19. Goldblum RM, Pelley RP, O’Donell AA, Pyron D, Heggers JP (1992) Antibodies to silicone elastomers and reactions to ventriculoperitoneal shunts. Lancet 340:510–513

    Article  PubMed  CAS  Google Scholar 

  20. Gower DJ, Lewis JC, Kelly DL Jr (1984) Sterile shunt malfunction. A scanning electron microscopic perspective. J Neurosurg 61:1079–1084

    Article  PubMed  CAS  Google Scholar 

  21. Guevara JA, La Torre J, Denoya C, Zúccaro G (1981) Microscopic studies in shunts for hydrocephalus. Childs Brain 8:284–293

    PubMed  CAS  Google Scholar 

  22. Harris CA, McAllister JP 2nd (2012) What we should know about the cellular and tissue response causing catheter obstruction in the treatment of hydrocephalus. Neurosurgery 70:1589–1601, discussion 1601–1582

    Article  PubMed  Google Scholar 

  23. Heidemann SM, Fiore M, Sood S, Ham S (2010) Eosinophil activation in the cerebrospinal fluid of children with shunt obstruction. Pediatr Neurosurg 46:255–258

    Article  PubMed  Google Scholar 

  24. Koga H, Mukawa J, Nakata M, Sakuta O, Higa Y (1992) Analysis of retained ventricular shunt catheters. Neurol Med Chir (Tokyo) 32:824–828

    Article  CAS  Google Scholar 

  25. Kossovsky N, Snow RB (1989) Clinical-pathological analysis of failed central nervous system fluid shunts. J Biomed Mater Res 23:73–86

    Article  PubMed  CAS  Google Scholar 

  26. Lundberg F, Li DQ, Falkenback D, Lea T, Siesjö P, Söderström S, Kudryk BJ, Tegenfeldt JO, Nomura S, Ljungh A (1999) Presence of vitronectin and activated complement factor C9 on ventriculoperitoneal shunts and temporary ventricular drainage catheters. J Neurosurg 90:101–108

    Article  PubMed  CAS  Google Scholar 

  27. Lundberg F, Tegenfeldt JO, Montelius L, Ransjö U, Appelgren P, Siesjö P, Ljungh A (1997) Protein depositions on one hydrocephalus shunt and on fifteen temporary ventricular catheters. Acta Neurochir (Wien) 139:734–742

    Article  CAS  Google Scholar 

  28. Luttikhuizen DT, Harmsen MC, Van Luyn MJA (2006) Cellular and molecular dynamics in the foreign body reaction. Tissue Eng 12:1955–1970

    Article  PubMed  CAS  Google Scholar 

  29. Moneret-Vautrin DA, Laxenaire MC, Bavoux F (1990) Allergic shock to latex and ethylene oxide during surgery for spinal bifida. Anesthesiology 73:556–558

    Article  PubMed  CAS  Google Scholar 

  30. Piatt JH, Carlson CV (1993) A search for determinants of cerebrospinal fluid shunt survival: retrospective analysis of a 14-year institutional experience. Pediatr Neurosurg 19:233–241, discussion 242

    Article  PubMed  Google Scholar 

  31. Pittman T, Kiburz J, Steinhardt G, Krock J, Gabriel K (1995) Ethylene oxide allergy in children with spina bifida. J Allergy Clin Immunol 96:486–488

    Article  PubMed  CAS  Google Scholar 

  32. Pittman T, Williams D, Rathore M, Knutsen AP, Mueller KR (1994) The role of ethylene oxide allergy in sterile shunt malfunctions. Br J Neurosurg 8:41–45

    Article  PubMed  CAS  Google Scholar 

  33. Sainte-Rose C, Piatt JH, Renier D, Pierre-Kahn A, Hirsch JF, Hoffman HJ, Humphreys RP, Hendrick EB (1991) Mechanical complications in shunts. Pediatr Neurosurg 17:2–9

    Article  PubMed  Google Scholar 

  34. Sekhar LN, Moossy J, Guthkelch AN (1982) Malfunctioning ventriculoperitoneal shunts. Clinical and pathological features. J Neurosurg 56:411–416

    Article  PubMed  CAS  Google Scholar 

  35. Sgouros S, Dipple SJ (2004) An investigation of structural degradation of cerebrospinal fluid shunt valves performed using scanning electron microscopy and energy-dispersive x-ray microanalysis. J Neurosurg 100:534–540

    Article  PubMed  Google Scholar 

  36. Singh D, Saxena A, Jagetia A, Singh H, Tandon MS, Ganjoo P (2012) Endoscopic observations of blocked ventriculoperitoneal (VP) shunt: a step toward better understanding of shunt obstruction and its removal. Br J Neurosurg

  37. Snow RB, Kossovsky N (1989) Hypersensitivity reaction associated with sterile ventriculoperitoneal shunt malfunction. Surg Neurol 31:209–214

    Article  PubMed  CAS  Google Scholar 

  38. Takahashi Y, Ohkura A, Hirohata M, Tokutomi T, Shigemori M (1998) Ultrastructure of obstructive tissue in malfunctioning ventricular catheters without infection. Neurol Med Chir (Tokyo) 38:399–404, discussion 403–394

    Article  CAS  Google Scholar 

  39. Thomale UW, Hosch H, Koch A, Schulz M, Stoltenburg G, Haberl E-J, Sprung C (2010) Perforation holes in ventricular catheters—is less more? Childs Nerv Syst 26:781–789

    Article  PubMed  Google Scholar 

  40. Traynelis VC, Powell RG, Koss W, Schochet SS, Kaufman HH (1988) Cerebrospinal fluid eosinophilia and sterile shunt malfunction. Neurosurgery 23:645–649

    Article  PubMed  CAS  Google Scholar 

  41. Traynelis VC, Willison CD, Follett KA, Chambers J, Schochet SS Jr, Kaufman HH (1991) Millipore analysis of valvular fluid in sterile valve malfunctions. Neurosurgery 28:848–852

    Article  PubMed  CAS  Google Scholar 

  42. VandeVord PJ, Gupta N, Wilson RB, Vinuya RZ, Schaefer CJ, Canady AI, Wooley PH (2004) Immune reactions associated with silicone-based ventriculo-peritoneal shunt malfunctions in children. Biomaterials 25:3853–3860

    Article  PubMed  CAS  Google Scholar 

  43. Wan KR, Toy JA, Wolfe R, Danks A (2011) Factors affecting the accuracy of ventricular catheter placement. J Clin Neurosci 18:485–488

    Article  PubMed  Google Scholar 

  44. Wilson TJ, Stetler WR Jr, Al-Holou WN, Sullivan SE (2013) Comparison of the accuracy of ventricular catheter placement using freehand placement, ultrasonic guidance, and stereotactic neuronavigation. J Neurosurg. doi:10.3171/2012.11.JNS111384

    Google Scholar 

  45. Zhong Y, Bellamkonda RV (2008) Biomaterials for the central nervous system. J R Soc Interface 5:957–975

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Lundbeckfonden; Aase og Ejnar Danielsens Fond; the staff at Laboratory of Neuropathology, Rigshospitalet (Ann Meisler, Jan Lauritzen & Diem Pham).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Blegvad.

Additional information

Presentation at a conference

Oral presentations at:

International Society for Pediatric Neurosurgery (ISPN) 2012 in Sydney

International Society for Hydrocephalus and Cerebrospinal Fluid Disorders (ISHCSF) 2012 in Kyoto

Clinical Trial Registration number if required

The project was approved by The National Committee on Health Research Ethics (protocol no. H-2-2011-025).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blegvad, C., Skjolding, A.D., Broholm, H. et al. Pathophysiology of shunt dysfunction in shunt treated hydrocephalus. Acta Neurochir 155, 1763–1772 (2013). https://doi.org/10.1007/s00701-013-1729-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-013-1729-6

Keywords

Navigation