Skip to main content

Advertisement

Log in

Oxycodone concentrations are greatly increased by the concomitant use of ritonavir or lopinavir/ritonavir

  • Clinical Trial
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to investigate the effect of antivirals ritonavir and lopinavir/ritonavir on the pharmacokinetics and pharmacodynamics of oral oxycodone, a widely used opioid receptor agonist used in the treatment of moderate to severe pain.

Methods

A randomized crossover study design with three phases at intervals of 4 weeks was conducted in 12 healthy volunteers. Ritonavir 300 mg, lopinavir/ritonavir 400/100 mg, or placebo b.i.d. for 4 days was given to the subjects. On day 3, 10 mg oxycodone hydrochloride was administered orally. Plasma concentrations of oxycodone, noroxycodone, oxymorphone, and noroxymorphone were determined for 48 h. Pharmacokinetic parameters were calculated with standard noncompartmental methods. Behavioral effects and experimental cold pain analgesia were assessed for 12 h. ANOVA for repeated measures was used for statistical analysis.

Results

Ritonavir and lopinavir/ritonavir increased the area under the plasma concentration–time curve of oral oxycodone by 3.0-fold (range 1.9- to 4.3-fold; P <0.001) and 2.6-fold (range 1.9- to 3.3-fold; P <0.001). The mean (± SD) elimination half-life increased after ritonavir and lopinavir/ritonavir from 3.6 ± 0.6 to 5.6 ± 0.9 h (P <0.001) and 5.7 ± 0.9 h (P <0.001), respectively. Both ritonavir (P <0.001) and lopinavir/ritonavir (P <0.05) increased the self-reported drug effect of oxycodone.

Conclusions

Ritonavir and lopinavir/ritonavir greatly increase the plasma concentrations of oral oxycodone in healthy volunteers and enhance its effect. When oxycodone is used clinically in patients during ritonavir and lopinavir/ritonavir treatment, reductions in oxycodone dose may be needed to avoid opioid-related adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee KA, Gay C, Portillo CJ, Coggins T, Davis H, Pullinger CR, Aouizerat BE (2009) Symptom experience in HIV-infected adults: a function of demographic and clinical characteristics. J Pain Symptom Manage 38:882–893

    Article  PubMed  Google Scholar 

  2. Frich LM, Borgbjerg FM (2000) Pain and pain treatment in AIDS patients: a longitudinal study. J Pain Symptom Manage 19:339–347

    Article  CAS  PubMed  Google Scholar 

  3. Gray G, Berger P (2007) Pain in women with HIV/AIDS. Pain 132(Suppl 1):S13–S21

    Article  PubMed  Google Scholar 

  4. Verma S, Estanislao L, Simpson D (2005) HIV-associated neuropathic pain: epidemiology, pathophysiology and management. CNS Drugs 19:325–334

    Article  PubMed  Google Scholar 

  5. Walker UA, Tyndall A, Daikeler T (2008) Rheumatic conditions in human immunodeficiency virus infection. Rheumatology (Oxford) 47:952–959

    Article  CAS  Google Scholar 

  6. Freynhagen R, Bennett MI (2009) Diagnosis and management of neuropathic pain. BMJ 339:b3002

    Article  CAS  PubMed  Google Scholar 

  7. Kalso E (2005) Oxycodone. J Pain Symptom Manage 29:S47–S56

    Article  CAS  PubMed  Google Scholar 

  8. Pöyhiä R, Seppälä T, Olkkola KT, Kalso E (1992) The pharmacokinetics and metabolism of oxycodone after intramuscular and oral administration to healthy subjects. Br J Clin Pharmacol 33:617–621

    PubMed  Google Scholar 

  9. Lalovic B, Phillips B, Risler LL, Howald W, Shen DD (2004) Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab Dispos 32:447–454

    Article  CAS  PubMed  Google Scholar 

  10. Boström E, Simonsson US, Hammarlund-Udenaes M (2005) Oxycodone pharmacokinetics and pharmacodynamics in the rat in the presence of the P-glycoprotein inhibitor PSC833. J Pharm Sci 94:1060–1066

    Article  PubMed  Google Scholar 

  11. Hassan HE, Myers AL, Lee IJ, Coop A, Eddington ND (2007) Oxycodone induces overexpression of P-glycoprotein (ABCB1) and affects paclitaxel’s tissue distribution in Sprague Dawley rats. J Pharm Sci 96:2494–2506

    Article  CAS  PubMed  Google Scholar 

  12. Boström E, Simonsson US, Hammarlund-Udenaes M (2006) In vivo blood-brain barrier transport of oxycodone in the rat: indications for active influx and implications for pharmacokinetics/pharmacodynamics. Drug Metab Dispos 34:1624–1631

    Article  PubMed  Google Scholar 

  13. Villesen HH, Foster DJ, Upton RN, Somogyi AA, Martinez A, Grant C (2006) Cerebral kinetics of oxycodone in conscious sheep. J Pharm Sci 95:1666–1676

    Article  CAS  PubMed  Google Scholar 

  14. Okura T, Hattori A, Takano Y, Sato T, Hammarlund-Udenaes M, Terasaki T, Deguchi Y (2008) Involvement of the pyrilamine transporter, a putative organic cation transporter, in blood-brain barrier transport of oxycodone. Drug Metab Dispos 36:2005–2013

    Article  CAS  PubMed  Google Scholar 

  15. Debouck C (1992) The HIV-1 protease as a therapeutic target for AIDS. AIDS Res Hum Retroviruses 8:153–164

    Article  CAS  PubMed  Google Scholar 

  16. Olkkola KT, Palkama VJ, Neuvonen PJ (1999) Ritonavir’s role in reducing fentanyl clearance and prolonging its half-life. Anesthesiology 91:681–685

    Article  CAS  PubMed  Google Scholar 

  17. Aarnoutse RE, Kleinnijenhuis J, Koopmans PP, Touw DJ, Wieling J, Hekster YA, Burger DM (2005) Effect of low-dose ritonavir (100 mg twice daily) on the activity of cytochrome P450 2D6 in healthy volunteers. Clin Pharmacol Ther 78:664–674

    Article  CAS  PubMed  Google Scholar 

  18. Kharasch ED, Bedynek PS, Walker A, Whittington D, Hoffer C (2008) Mechanism of ritonavir changes in methadone pharmacokinetics and pharmacodynamics: II. Ritonavir effects on CYP3A and P-glycoprotein activities. Clin Pharmacol Ther 84:506–512

    Article  CAS  PubMed  Google Scholar 

  19. Liu P, Foster G, Gandelman K, LaBadie RR, Allison MJ, Gutierrez MJ, Sharma A (2007) Steady-state pharmacokinetic and safety profiles of voriconazole and ritonavir in healthy male subjects. Antimicrob Agents Chemother 51:3617–3626

    Article  CAS  PubMed  Google Scholar 

  20. Kharasch ED, Mitchell D, Coles R, Blanco R (2008) Rapid clinical induction of hepatic cytochrome P4502B6 activity by ritonavir. Antimicrob Agents Chemother 52:1663–1669

    Article  CAS  PubMed  Google Scholar 

  21. Hsu A, Granneman GR, Bertz RJ (1998) Ritonavir. Clinical pharmacokinetics and interactions with other anti-HIV agents. Clin Pharmacokinet 35:275–291

    Article  CAS  PubMed  Google Scholar 

  22. Cvetkovic RS, Goa KL (2003) Lopinavir/ritonavir: a review of its use in the management of HIV infection. Drugs 63:769–802

    Article  CAS  PubMed  Google Scholar 

  23. Yeh RF, Gaver VE, Patterson KB, Rezk NL, Baxter-Meheux F, Blake MJ, Eron JJ Jr, Klein CE, Rublein JC, Kashuba AD (2006) Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr 42:52–60

    CAS  PubMed  Google Scholar 

  24. Wyen C, Fuhr U, Frank D, Aarnoutse RE, Klaassen T, Lazar A, Seeringer A, Doroshyenko O, Kirchheiner JC, Abdulrazik F, Schmeisser N, Lehmann C, Hein W, Schomig E, Burger DM, Fatkenheuer G, Jetter A (2008) Effect of an antiretroviral regimen containing ritonavir boosted lopinavir on intestinal and hepatic CYP3A, CYP2D6 and P-glycoprotein in HIV-infected patients. Clin Pharmacol Ther 84:75–82

    Article  CAS  PubMed  Google Scholar 

  25. Hagelberg NM, Nieminen TH, Saari TI, Neuvonen M, Neuvonen PJ, Laine K, Olkkola KT (2009) Voriconazole drastically increases exposure to oral oxycodone. Eur J Clin Pharmacol 65:263–271

    Article  CAS  PubMed  Google Scholar 

  26. Saari TI, Grönlund J, Hagelberg NM, Neuvonen M, Laine K, Neuvonen PJ, Olkkola KT (2010) Effects of itraconazole on the pharmacokinetics and pharmacodynamics of intravenously and orally administered oxycodone. Eur J Clin Pharmacol 66:387–397

    Article  CAS  PubMed  Google Scholar 

  27. Grönlund J, Saari T, Hagelberg N, Martikainen IK, Neuvonen PJ, Olkkola KT, Laine K (2010) Effect of telithromycin on the pharmacokinetics and pharmacodynamics of oral oxycodone. J Clin Pharmacol 50:101–108

    Article  PubMed  Google Scholar 

  28. Michna E, Ross EL, Hynes WL, Nedeljkovic SS, Soumekh S, Janfaza D, Palombi D, Jamison RN (2004) Predicting aberrant drug behavior in patients treated for chronic pain: importance of abuse history. J Pain Symptom Manage 28:250–258

    Article  PubMed  Google Scholar 

  29. Sistonen J, Fuselli S, Levo A, Sajantila A (2005) CYP2D6 genotyping by a multiplex primer extension reaction. Clin Chem 51:1291–1295

    Article  CAS  PubMed  Google Scholar 

  30. Neuvonen M, Neuvonen PJ (2008) Determination of oxycodone, noroxycodone, oxymorphone, and noroxymorphone in human plasma by liquid chromatography-electrospray-tandem mass spectrometry. Ther Drug Monit 30:333–340

    Article  CAS  PubMed  Google Scholar 

  31. Rezk NL, White NR, Jennings SH, Kashuba AD (2009) A novel LC-ESI-MS method for the simultaneous determination of etravirine, darunavir and ritonavir in human blood plasma. Talanta 79:1372–1378

    Article  CAS  PubMed  Google Scholar 

  32. Nieminen TH, Hagelberg NM, Saari TI, Pertovaara A, Neuvonen M, Laine K, Neuvonen PJ, Olkkola KT (2009) Rifampin greatly reduces the plasma concentrations of intravenous and oral oxycodone. Anesthesiology 110:1371–1378

    Article  CAS  PubMed  Google Scholar 

  33. Bond AJ, Lader MH (1974) The use of analoque scales in rating subjective feelings. Br J Med Psychol 47:211–218

    Google Scholar 

  34. Hannington-Kiff JG (1970) Measurement of recovery from outpatient general anaesthesia with a simple ocular test. Br Med J 3:132–135

    Article  CAS  PubMed  Google Scholar 

  35. Stone BM (1984) Pencil and paper tests—sensitivity to psychotropic drugs. Br J Clin Pharmacol 18:15S–20S

    PubMed  Google Scholar 

  36. Cogan DG (1941) Simplifiied entoptic pupillometer. Am J Ophthalmol 24:1431–1433

    Google Scholar 

  37. Jones SF, McQuay HJ, Moore RA, Hand CW (1988) Morphine and ibuprofen compared using the cold pressor test. Pain 34:117–122

    Article  CAS  PubMed  Google Scholar 

  38. Ernest CS 2nd, Hall SD, Jones DR (2005) Mechanism-based inactivation of CYP3A by HIV protease inhibitors. J Pharmacol Exp Ther 312:583–591

    Article  CAS  PubMed  Google Scholar 

  39. Granfors MT, Wang JS, Kajosaari LI, Laitila J, Neuvonen PJ, Backman JT (2006) Differential inhibition of cytochrome P450 3A4, 3A5 and 3A7 by five human immunodeficiency virus (HIV) protease inhibitors in vitro. Basic Clin Pharmacol Toxicol 98:79–85

    Article  CAS  PubMed  Google Scholar 

  40. Greenblatt DJ, von Moltke LL, Harmatz JS, Durol AL, Daily JP, Graf JA, Mertzanis P, Hoffman JL, Shader RI (2000) Alprazolam-ritonavir interaction: implications for product labeling. Clin Pharmacol Ther 67:335–341

    Article  CAS  PubMed  Google Scholar 

  41. Ouellet D, Hsu A, Granneman GR, Carlson G, Cavanaugh J, Guenther H, Leonard JM (1998) Pharmacokinetic interaction between ritonavir and clarithromycin. Clin Pharmacol Ther 64:355–362

    Article  CAS  PubMed  Google Scholar 

  42. Hsu A, Granneman GR, Witt G, Locke C, Denissen J, Molla A, Valdes J, Smith J, Erdman K, Lyons N, Niu P, Decourt JP, Fourtillan JB, Girault J, Leonard JM (1997) Multiple-dose pharmacokinetics of ritonavir in human immunodeficiency virus-infected subjects. Antimicrob Agents Chemother 41:898–905

    CAS  PubMed  Google Scholar 

  43. Kharasch ED, Hoffer C, Whittington D, Walker A, Bedynek PS (2009) Methadone pharmacokinetics are independent of cytochrome P4503A (CYP3A) activity and gastrointestinal drug transport: insights from methadone interactions with ritonavir/indinavir. Anesthesiology 110:660–672

    Article  CAS  PubMed  Google Scholar 

  44. Weemhoff JL, von Moltke LL, Richert C, Hesse LM, Harmatz JS, Greenblatt DJ (2003) Apparent mechanism-based inhibition of human CYP3A in-vitro by lopinavir. J Pharm Pharmacol 55:381–386

    Article  CAS  PubMed  Google Scholar 

  45. Kumar GN, Rodrigues AD, Buko AM, Denissen JF (1996) Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J Pharmacol Exp Ther 277:423–431

    CAS  PubMed  Google Scholar 

  46. Zwisler ST, Enggaard TP, Mikkelsen S, Brosen K, Sindrup SH (2010) Impact of the CYP2D6 genotype on post-operative intravenous oxycodone analgesia. Acta Anaesthesiol Scand 54:232–240

    Article  CAS  PubMed  Google Scholar 

  47. Bruce RD, Altice FL, Moody DE, Lin SN, Fang WB, Sabo JP, Wruck JM, Piliero PJ, Conner C, Andrews L, Friedland GH (2009) Pharmacokinetic interactions between buprenorphine/naloxone and tipranavir/ritonavir in HIV-negative subjects chronically receiving buprenorphine/naloxone. Drug Alcohol Depend 105:234–239

    Article  CAS  PubMed  Google Scholar 

  48. van der Lee MJ, Dawood L, ter Hofstede HJ, de Graaff-Teulen MJ, van Ewijk-Beneken Kolmer EW, Caliskan-Yassen N, Koopmans PP, Burger DM (2006) Lopinavir/ritonavir reduces lamotrigine plasma concentrations in healthy subjects. Clin Pharmacol Ther 80:159–168

    Article  PubMed  Google Scholar 

  49. Lalovic B, Kharasch E, Hoffer C, Risler L, Liu-Chen LY, Shen DD (2006) Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin Pharmacol Ther 79:461–479

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We want to thank Mrs. Elina Kahra, medical laboratory technologist, and Mrs. Mia Suppanen-Olkkola, RN, for their skilful technical assistance; Dr. Juha Grönlund, M.D., for his practical help during the data collection and Mrs. Kaisa J. Kurkinen, M.Sc., for the determination of ritonavir and lopinavir concentrations.

This study was supported by Turku University Hospital research fund EVO 13821 and Turku University Foundation, Turku, Finland; Sigrid Jusélius Foundation and Instrumentarium Research Foundation, Helsinki, Finland.

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuija H. Nieminen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieminen, T.H., Hagelberg, N.M., Saari, T.I. et al. Oxycodone concentrations are greatly increased by the concomitant use of ritonavir or lopinavir/ritonavir. Eur J Clin Pharmacol 66, 977–985 (2010). https://doi.org/10.1007/s00228-010-0879-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-010-0879-1

Keywords

Navigation