
Appendix 2 (as supplied by the authors). Detailed methods 

Identification of predictors 

Twenty-one predictor variables were identified and selected based on previous stroke and 
diabetes risk algorithms derived using the same data source.(1, 2) All 21 predictor variables were 
included after a formal check of multicollinearity. An indicator variable for immigration status 
together with fraction of life lived in Canada was used to account for both recent and non-recent 
immigrants. Indicator variables for smoking status were created to allow inclusion of smoking 
pack-years as a continuous predictor. Detailed definitions and measurement of these variables 
are presented in Table 1. The specific wording of questions are available as online appendices 
and within the survey documentation.(3, 4) 

Data cleaning and coding of predictors 

Data cleaning and coding was completed without examining outcome-risk factor associations. 
After inspection of histograms and boxplots, continuous variables were truncated to the 99.5th 
percentile.  

Missing data 

We used multiple imputation to impute missing values on predictor variables.(5) The imputation 
model consisted of the full list of predictor variables, time to event and censoring variables, and 
auxiliary variables—that is, variables that are not predictors but may nevertheless be useful in 
generating imputed values (for example, income and self-perceived health). We generated five 
multiple imputation datasets. The imputation procedure employed predictive mean matching to 
generate imputed values and used the bootstrap to approximate the process of drawing 
predicted values from a full Bayesian predictive distribution. Continuous variables in the 
imputation model were transformed using restricted cubic splines. The final prediction model 
was estimated separately for each imputation-completed dataset and the results combined using 
the rules developed by Rubin(6) to account for imputation uncertainty.  

Model specification 

We fit a preliminary main effects model that included an initial degree of freedom allocation for 
each predictor.(5, 7) Continuous predictors were flexibly modelled using restricted cubic splines, 
i.e., piecewise cubic functions that are smooth at the knots and restricted to be linear in the tails. 
The knots were placed at fixed quantiles of the distribution: in particular, at the 5th, 27.5th, 50th, 
72.5th and 95th percentiles for 5 knot splines and at the 10th, 50th and 90th percentiles for 3 knot 
splines. Ordinal variables with few categories were specified as either linear terms, or as 
categorical if the expected association was more complex than linear (i.e., level of area 
deprivation).

The initial model specification, presented in Table 2, included a total of 61 degrees of freedom 
(48 main, 13 interaction), compared to a possible maximum (based on number of events) of 110. 
We allocated the final degrees of freedom to individual predictors based on a partial test of 
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association with the outcome. Partial association chi-squared statistics for each predictor 
variable minus their degrees of freedom were plotted in descending order. We retained the initial 
degrees of freedom for variables with higher predictive potential, but predictors with lower 
predictive potential were modelled with reduced degrees of freedom, i.e., as simple linear terms 
or after combining infrequent categories. Interaction terms, specified above, were added to the 
final model and were restricted to linear terms.  

The full models were specified in accordance with the pre-specified plan of maintaining all 
predictors in the model but with reduced DFs, reflecting the importance in the partial correlation 
plots. After applying the step-down procedure, the final application (reduced) model had 36 and 
37 degrees of freedom with 12 predictors (6 and 7 continuous) and 11 interaction terms for 
female and male models, respectively. 

Model estimation 

Models were estimated using a proportional hazards model for the subdistribution of a 
competing risk with death from a non-CVD cause considered as a competing risk.(8) All predictors 
were centred about their means prior to analysis. The proportionality assumption was assessed 
using plots of raw and smoothed scaled Schoenfeld residuals versus time for each predictor. 
Influence of data points was assessed by plotting scaled df beta residuals for each covariate. The 
degree of over-fitting (shrinkage) in the model was estimated using the heuristic shrinkage 
estimator (based on the log likelihood ratio chi-square statistic for the full model).(9) Survey 
weights were not used for model development. We recommend survey weight for population 
application when available or used in population application data.(10) Analyses were conducted 
using cmprsk and Harrell's HMisc(5) and rms packages of functions in R(11) as well as SAS v9.3. 

Assessment of model performance 

Nagelkerke’s R2 and the Brier score were calculated as overall measures of accuracy. 
Discrimination was assessed using Harrell's overall concordance statistic, with 95% confidence 
intervals estimated using bootstrap samples. Internally validated performance measures were 
obtained from 200 bootstrap samples, using the procedure described by Steyerberg.(12) 

Calibration plots were created by comparing mean 5-year predicted probabilities with cumulative 
incidence function estimates of observed rates stratified by deciles of predicted risk. The 
calibration slope was estimated by including the linear predictor as a single term in the model 
fitted to the validation cohort. Deviation from a slope of 1 was tested using a Wald test. The 
calibration slope reflects the combined effect of over-fitting to the derivation data as well as true 
differences in effects of predictors. All model performance measures were calculated using the 
first of the multiply imputed datasets. 

No major violation of the proportional hazards assumption was observed. Inspection of influence 
diagnostics revealed a small number of influential observations; these values were inspected for 
measurement error. The degree of over-fitting in the model was minimal (heuristic shrinkage 
estimator 0.983 for females and 0.978 for males) indicating that the risk of over-fitting was 
low. 



Risk groups 

Subgroup validation was implemented as a conceptually easy check of calibration by comparing 
observed and predicted risks within predefined subgroups of importance to clinicians and policy 
makers.(13) We examined subgroups using predefined criteria for clinically or policy relevant 
standards of calibration (<20% difference between observed and predicted estimates for 
categories with prevalence higher than 5%). In total, there were 94 subgroups for females and 
111 for males, which were defined based on age, behavioural risk exposure categories, health 
regions, socio-demographic groups, hypertension status, and diabetes status.  

Estimation of the final parsimonious model 

The parsimonious model was generated by deleting variables to a desired degree of accuracy 
based on contribution to model R2.(9) To maximize the amount of data for the final model, the 
final regression coefficients were estimated using the combined data from both the derivation 
and validation cohorts with outcome events updated to reflect the most recent years available. 

To maximize the amount of data for the final model, the final regression coefficients were 
estimated using the combined data from both the derivation and validation cohorts with 
outcome events updated to reflect the most recent years available. 

Sensitivity testing 

We performed the following sensitivity testing and exploratory analyses that were not specified 
in our initial protocol. None of these analyses were incorporated into the final algorithms. 
Algorithms were generated using a Cox proportional hazards model without competing risks. 
There was a non-significant improved calibration in several subgroups, particularly those at 
higher risk deciles and for people older than age 70 years (see Additional file 9). The models had 
very similar discrimination (C-stat: 0.84 versus 0.82 for males; 0.87 versus 0.86 for females – 
reduced model). The observation of small improvement or no difference was unexpected based 
on previous studies of cardiovascular risk.(14, 15) Further examination of the role is warranted. 

In exploratory analyses, we examined models with more specific exposure ascertainment (more 
degrees of freedom) where differences in calibration were greater than 20%. These models 
included specifying age using greater knots in the restrictive cubic splines and other continuous 
forms(16), physical activity considering exposure of zero METs, as well adding measures of 
fragility that may be associated with low physical activity. In addition, we examined expanded 
categories of ethnicity, including Chinese, South Asian, East Asian and Black, and further 
interaction terms. None of these models improved predictive performance, including both 
discrimination and calibration assessment within the relevant subgroups. 

Calculation of heart age 

Heart age is calculated by comparing an individual’s CVDPoRT risk to the average age- and sex- 
specific CVDPoRT risk in the Ontario population using the full development data, Ontario 



sample of the CCHS 1.1 to 4.1 (2001-2006), mean risk by age, 5-year moving average (see table 
below).  

5-year CVDPoRT risk of incident CVD,
Ontario 2001 - 2006 

Age 
Mean male Mean female 

20 0.000177 0.000246 
21 0.000237 0.000284 
22 0.000304 0.000322 
23 0.000388 0.000371 
24 0.000498 0.000413 
25 0.000624 0.000464 
26 0.000758 0.000518 
27 0.000912 0.000617 
28 0.001076 0.000710 
29 0.001325 0.000823 
30 0.001610 0.000897 
31 0.001983 0.000955 
32 0.002377 0.001010 
33 0.002823 0.001139 
34 0.003307 0.001315 
35 0.003846 0.001539 
36 0.004612 0.001746 
37 0.005521 0.001920 
38 0.006572 0.002248 
39 0.007496 0.002507 
40 0.008570 0.002951 
41 0.009705 0.003166 
42 0.011064 0.003600 
43 0.012206 0.003970 
44 0.013832 0.004448 
45 0.015622 0.004920 
46 0.017283 0.005342 
47 0.018687 0.005732 
48 0.019924 0.006189 
49 0.021033 0.006735 
50 0.022331 0.007338 
51 0.023514 0.007916 
52 0.025441 0.008633 
53 0.027009 0.009538 
54 0.027961 0.010259 
55 0.028794 0.010961 



56 0.029511 0.011721 
57 0.031275 0.012507 
58 0.032953 0.013484 
59 0.034962 0.014491 
60 0.036757 0.016147 
61 0.038411 0.017212 
62 0.039427 0.018274 
63 0.040573 0.019654 
64 0.042365 0.021702 
65 0.044648 0.023903 
66 0.046977 0.025815 
67 0.048806 0.027361 
68 0.051398 0.029237 
69 0.054247 0.030656 
70 0.056716 0.033289 
71 0.059167 0.036023 
72 0.061266 0.039495 
73 0.064792 0.042323 
74 0.067395 0.044990 
75 0.070273 0.048040 
76 0.070809 0.051702 
77 0.074041 0.055665 
78 0.078739 0.059357 
79 0.083745 0.063752 
80 0.086496 0.068913 
81 0.088092 0.073081 
82 0.091158 0.077341 
83 0.096163 0.081097 
84 0.100321 0.088140 
85 0.108525 0.094434 
86 0.114049 0.100503 
87 0.120773 0.104461 
88 0.120888 0.109521 
89 0.128259 0.124560 
90+ 0.130378 0.132655 
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