Ensuring quality in medical laboratories

The problems in Canada with laboratory medicine were recently discussed in CMAJ. The Canadian Association of Pathologists released a 5-point action plan following its 2008 annual meeting. We fully endorse the call for mandatory external testing of proficiency for all Canadian medical laboratories and the dissemination of a quality-management checklist for diagnostic immunohistochemistry.

However, we disagree with the association’s assertion that a national accreditation program will ensure that medical laboratories in Canada will meet quality standards. A diagnostic accreditation program is effective only if participation in the program is mandatory and the program has the authority to shut down any laboratory that does not meet the established standards. Provincial governments (not the federal government) are responsible for providing and regulating health care services in Canada.

In British Columbia, diagnostic laboratories are regulated in part through our diagnostic accreditation program, which operates under the authority of the College of Physicians and Surgeons of British Columbia and the Medical Practitioners Act of British Columbia. A physician operating a nonaccredited laboratory is subject to loss of licensure. The act is a powerful piece of legislation that completes the quality-assurance cycle of assessment, evaluation and corrective action. The legislation provides strong support to the directors of medical laboratories as they strive to provide quality services under pressure from health authorities to contain costs. The federal government, the Canadian Medical Association and the provincial medical associations should lobby for the creation of provincial diagnostic accreditation programs and for the passage of appropriate provincial regulatory legislation.

We applaud the efforts of the Canadian Association of Pathologists to develop a system to measure professional workload. However, workload issues cannot be used as an excuse for substandard diagnostic practice. As professionals, we are responsible for the accuracy and completeness of our diagnostic procedures and reports, for maintaining our skills and for being able to demonstrate this in quality-assurance programs.

Robert Wolber MD
David Chercover MD
Department of Pathology, Lions Gate Hospital, Vancouver, BC

Competing interests: None declared.

REFERENCES

Attracting medical students to rural areas

Declining recruitment to family medicine is a pressing concern in many countries. In rural areas of Saxony, Germany, there is a severe shortage of family physicians even though 27% of the medical undergraduates currently enrolled at the University of Leipzig in Saxony are from rural areas; a rural upbringing is one of the important determinants of the choice to practise in a rural area, according to Rourke. In response to the shortage of family physicians in Saxony, the government, health professionals and health insurance companies will implement a novel initiative in October 2008 that will provide financial incentives to support the recruitment of family physicians.

Medical students in the third year or a subsequent year of the 6-year medical curriculum will be invited to participate in a special program, for which they will receive about €20 000 (Can$32 000). Students in this program will be adopted by a certified rural physician and will spend 1 day every month in this physician’s practice for 4 years. After graduation these students are expected to enrol in a family medicine residency program, and they will have to work in an underserved area in Saxony for at least 4 years.

Heide B. Schneider MD PhD
Department of Family Medicine, University of Leipzig, Leipzig, Germany

Competing interests: None declared.

Improving the reporting of surveys of clinicians

We congratulate Karen Burns and colleagues for their article on how to design and conduct self-administered surveys of clinicians. We agree that there is a need to advance the idea of standardizing the reporting and the quality assessment of surveys of clinicians, and we believe that this extends to all studies targeting the practices of health professionals. Existing guidelines on how to report studies pertaining to the gen-
eral population need to be adapted for studies of health professionals. For example, we systematically reviewed instruments to assess the perceptions that physicians have of the decision-making process in specific clinical encounters and adapted the STARD (Standards for Reporting of Diagnostic Accuracy) guidelines for evaluating the quality of study reporting.\(^1\),\(^2\)

As reviewers for the Effective Practice and Organisation of Care Group of the Cochrane Collaboration, we agree that the synthesis of studies examining the practices of health professionals suffers from incomplete review of the existing literature, lack of standardization of measurements and improper analytic methods.\(^1\),\(^2\) However, we have also observed that such studies suffer greatly from the lack of a theoretical basis, which in turn hampers the development of effective interventions to improve clinical practices.\(^1\) Therefore, we suggest adding an item to the list of questions to consider when preparing a report of surveys in Table 4: “In the Introduction, is the model (or theory) or the conceptual framework clearly stated?”

France Légaré MD PhD
Tier 2 Canada Research Chair in Implementation of Shared Decision Making in Primary Care, Department of Family Medicine
Stéphane Ratté MLIS
Department of Epidemiology
Université Laval, Québec, Que.

REFERENCES

DOI:10.1503/cmaj.1080103

Correction
Figure 7 of a recent meta-analysis examining smoking cessation therapies\(^1\) contains 2 errors. First, the second and third columns should have been labelled “Bupropion” and “Varenicline,” respectively. Second, varenicline was inadvertently compared with placebo rather than with bupropion, the intended comparator. The authors’ revised analysis suggests that varenicline therapy may increase the proportion of patients who are abstinent compared with bupropion therapy; however, the credible interval (CrI) is wide, and these results are not definitive (odds ratio 1.40, 95% CrI 0.75–2.66) (Figure 1). All the other analyses presented in this article have been re-verified.

REFERENCE

DOI:10.1503/cmaj.081467

<table>
<thead>
<tr>
<th>Study</th>
<th>No. of participants</th>
<th>Odds ratio (95% CrI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bupropion</td>
<td>Varenicline</td>
</tr>
<tr>
<td>Jorenby et al.(^3)</td>
<td>80/342</td>
<td>105/344</td>
</tr>
<tr>
<td>Gonzales et al.(^2)</td>
<td>75/329</td>
<td>99/352</td>
</tr>
<tr>
<td>Nides et al.(^4)</td>
<td>8/126</td>
<td>10/126</td>
</tr>
<tr>
<td>Nides et al.(^4)</td>
<td>8/126</td>
<td>7/126</td>
</tr>
<tr>
<td>Nides et al.(^4)</td>
<td>8/126</td>
<td>18/125</td>
</tr>
<tr>
<td>Overall</td>
<td>163/797</td>
<td>239/1073</td>
</tr>
</tbody>
</table>

Figure 1: Direct comparison of the effect of varenicline and bupropion on smoking cessation, based on results from varenicline trials that had a bupropion control arm. Trials are ordered based on the number of patients analyzed using the most rigorous criteria. CrI = credible interval.