Is Canada’s sex ratio in decline?

Linda Dodds,*† PhD; B.A. Armson,* MD

Abstract

In this issue (see pages 37 to 41) Dr. Bruce B. Allan and associates present data showing trends in the ratio of male to female births in Canada between 1930 and 1990. They focus their investigation on the years 1970 to 1990 and report that the proportion of male births of total live births during this period decreased by about 0.2%. This finding raises some intriguing and difficult questions. If the proportion of male births is decreasing, what are the contributing factors? Are these factors responsible for other reproductive problems? Is a change in the sex ratio a cause for concern about the future demographic structure of our population?

Before we speculate on these questions, we should scrutinize Allan and associates’ results more closely. Some fluctuation in the proportion of males and females born each year can be expected. The challenge comes in determining when such fluctuation exceeds that attributable to chance. Although the magnitude of the change reported in this study is very small, the very large sample size (all Canadian births for a 20-year period) provides the necessary power for statistical significance. The authors underscore the importance of the change they report, noting that it translates to 8639 fewer male births over 20 years.

The authors acknowledge the exploratory nature of their investigation, which they undertook when data for the period 1930–90 indicated that a decrease in the proportion of male births had occurred after 1970. As long as we accept the exploratory nature of the study and interpret its results cautiously, it is interesting to
speculate why a decline in the sex ratio might have occurred. Although some of the variation is likely random, part of it might be related to changes in conditions that influence the probability of a male or female birth.

Potential factors

Vital statistics databases are useful in providing data for entire populations but are somewhat limited in the amount of information they collect. Without factors, we can only speculate about what may have contributed to the observed change. Some basic information, such as parental age and parity, is available on vital records and might have provided some insight in Allan and associates’ study.

Sex ratio is thought to be affected by a wide range of biologic and environmental factors, including race, birth order, parental age, parental hormone levels, timing of conception, ovulation induction, environmental toxins and socioeconomic status. As Allan and associates point out, recent immigration patterns in Canada have resulted in a significant increase in the Asian population, which would be expected to result in an increase rather than a decrease in the sex ratio. The true magnitude of racial variations can be difficult to determine, given the limitations of census data in developing countries, but it appears to be small. Thus, it is unlikely that the changing racial composition of the Canadian population could explain a decline in the sex ratio.

Ovulation induction

It has been suggested that drugs used for ovulation induction result in a significant decrease in the sex ratio, although the magnitude of this decrease is not consistent across study populations. The decrease may be directly related to increased gonadotropin levels or may be a secondary consequence of follicular phase length or timing of conception, which is often carefully controlled in the treatment of infertile couples. The current prevalence of infertility in Canada is between 7% and 8% (300,000 couples). On the basis of national survey data, it has been estimated that approximately 43% of infertile women undergo ovulation induction. If we apply these estimates to the infertile population in Canada, we would expect approximately 6500 births per year resulting from ovulation induction, assuming a 75% live birth rate after ovulation. Consequently, it can be estimated that live births resulting from ovulation induction represent approximately 2% of live births annually in Canada. Assuming that ovulation induction decreases the proportion of male births to 46.0%, about 350 fewer male births per year would result. Thus, the increased use of ovulation induction may have contributed in part to the observed trend.

Environmental factors

Evidence relating to the impact of pollution, environmental toxins and industrial exposures on the sex ratio is conflicting. Several investigators found an association between an increase in the sex ratio and industrial pollution, but this was later refuted. Associations between various occupational exposures (i.e., to dibromochloropropane, pesticides, inorganic borates, carbon, alcohol and lead) and low sex ratios have been reported. It is thought that apparent decreases in the sex ratio may be related to an increase in female offspring secondary to elevated gonadotropin and normal testosterone levels in men exposed to industrial toxins. However, because industrial pollution appears to have a negligible effect on the sex ratio, and given that occupational exposures would affect only a small proportion of the Canadian workforce, it would be difficult to attribute a decline in the sex ratio in this country to these factors.

There has been increasing concern that environmental factors are responsible for an apparent decrease in mean sperm count and semen quality, resulting in an increase in male infertility. However, evidence of declining sperm counts has been challenged by a study that demonstrated no change in sperm counts over the past 25 years in the United States. Moreover, an association between declining sperm counts and changes in the sex ratio has not been clearly established.

Abortion

Because of advances in prenatal diagnosis, the number of abortions prompted by major fetal abnormalities has risen in the past decade. If a higher proportion of affected fetuses were male, this would result in a small decline in the sex ratio. However, of the pregnancies terminated for major fetal abnormalities in Nova Scotia from 1991 to
1994, only 45.8% were male (Dr. Robert M. Liston, Department of Obstetrics and Gynecology, Dalhousie University, Halifax: personal communication, 1996). Therefore, pregnancy termination resulting from fetal abnormalities cannot explain a decrease in the proportion of male births.

Other factors

The largest decrease in the sex ratio observed by Allan and associates occurred in the Atlantic provinces. In an attempt to account for this finding, we used the population-based Nova Scotia Atlee Perinatal Database to examine trends within Nova Scotia. In 1980 the database began collecting data on maternal and infant characteristics for live births and stillbirths in the province. We investigated the effect of year of birth, maternal age, parity and smoking on the proportion of males born from 1980 to 1994.

From the Nova Scotia data, we observed a trend similar to that reported by Allan and associates for the Atlantic provinces as a whole. However, the decline we saw in the proportion of male births did not reach statistical significance. As other researchers have found, the proportion of male live births was slightly lower among women who smoked during pregnancy (50.9%) than among those who did not smoke (51.2%). However, rates of smoking during pregnancy have changed very little since 1988 in this population. In Nova Scotia, the sex ratio increased linearly with maternal age from 25 years and up. In contrast with other populations, the sex ratio was highest (51.6% males) among women 20 to 24 years old and lowest (50.8% males) among those less than 20. Elsewhere, increased parity has been associated with a decreasing birth ratio. However, data from the Nova Scotia database do not support this association. Clearly, the factors discussed above—smoking, maternal age and parity—do not account for a decrease in the proportion of male births.

Summing up

There appears to have been a small but significant decline in the sex ratio in Canada from 1970 to 1990. Although the factors responsible for this change are unclear, the increasing use of ovulation induction may have played a role. Whether the decrease in the proportion of male births represents a true secular trend is uncertain, however. When one extends the period of observation to 1930–90, variations are evident but with no obvious trends. Ulizzi and Zonta demonstrated similar patterns of sex-ratio variation in two other populations and concluded that “no dramatic change in the sex ratio values for total births is observed when the time period is sufficiently long.” Despite the existence of factors that may influence the sex ratio in the short term, there appears to be a tendency for the sex ratio to stabilize. Whether such stabilization is related to natural selection or to human behavioural and psychological factors is debatable, but variation in the ratio away from the expected value may cause negative feedback that results in a gradual shift in the sex ratio back toward the norm.

References

Reprint requests to: Dr. Linda Dodds, Reproductive Care Program of Nova Scotia, Izak Walton Killam–Grace Health Centre, 5980 University Ave., Halifax NS B3H 4N1